scholarly journals Periodic variability of the z = 2.0 quasar QSO B1312+7837

Author(s):  
M Minev ◽  
V D Ivanov ◽  
T Trifonov ◽  
E Ovcharov ◽  
S Fabrika ◽  
...  

Abstract We report here the first results from a 15-yr long variability monitoring of the z = 2.0 quasar QSO B1312+7837. It shows luminosity changes with a period P ∼ 6.13 yr (P ∼ 2.04 yr at rest frame) and an amplitude of ∼0.2 mag, superimposed on a gradual dimming at a rate of ∼0.55 mag per 100 yrs. Two false periods associated with power peaks in the data windowing function were discarded. The measured period is confirmed with a bootstrapping Monte Carlo simulation. A damped random walk model yields a better fit to the data than a sine-function model, but at the cost of employing some high frequency variations which are typically not seen in quasars. We consider the possible mechanisms driving this variability, and conclude that orbital motion of two supermassive black holes – result from a recent galaxy merger – is a possible explanation.

2020 ◽  
pp. 61-73
Author(s):  
Yu. M. Tsygalov

The forced work of Russian universities remotely in the context of the pandemic (COVID-19) has generated a lot of discussion about the benefits of the new form of education. The first results were summed up and reports were presented, the materials of which showed that the main goal of online education — the prevention of the spread of infection, - has been achieved. Against this background, proposals and publications have appeared substantiating the effectiveness of the massive introduction of distance learning in Russia, including in higher education. However, the assessment of such training by the population and students in publications and in social networks was predominantly negative and showed that the number of emerging problems exceeds the possible benefits of the new educational technology. Based on the analysis of the materials of publications and personal experience of teaching online, the potential benefits and problems of distance learning in higher education in Russia are considered. It is proposed to consider the effects separately for the suppliers of new technology (government, universities) and consumers (students, teachers, society). It is substantiated that the massive introduction of online education allows not only to reduce the negative consequences of epidemics, but also to reduce budgetary funding for universities, optimize the age composition of teachers, and reduce the cost of maintaining educational buildings. However, there will be a leveling / averaging of the quality of education, and responsibility for the quality of training will shift from the state/universities to students. The critical shortcomings of online education are the low degree of readiness of the digital infrastructure, the lack of a mechanism for identifying and monitoring the work of students, information security problems, and the lack of trust in such training of the population. The massive use of online education creates a number of risks for the country, the most critical of which is the destruction of the higher education system and a drop in the effectiveness of personnel training. The consequences of this risk realization are not compensated by any possible budget savings.


Universe ◽  
2021 ◽  
Vol 7 (8) ◽  
pp. 279
Author(s):  
Zdeněk Stuchlík ◽  
Jaroslav Vrba

We study epicyclic oscillatory motion along circular geodesics of the Simpson–Visser meta-geometry describing in a unique way regular black-bounce black holes and reflection-symmetric wormholes by using a length parameter l. We give the frequencies of the orbital and epicyclic motion in a Keplerian disc with inner edge at the innermost circular geodesic located above the black hole outer horizon or on the our side of the wormhole. We use these frequencies in the epicyclic resonance version of the so-called geodesic models of high-frequency quasi-periodic oscillations (HF QPOs) observed in microquasars and around supermassive black holes in active galactic nuclei to test the ability of this meta-geometry to improve the fitting of HF QPOs observational data from the surrounding of supermassive black holes. We demonstrate that this is really possible for wormholes with sufficiently high length parameter l.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Donald Marolf ◽  
Henry Maxfield

AbstractWe reformulate recent insights into black hole information in a manner emphasizing operationally-defined notions of entropy, Lorentz-signature descriptions, and asymptotically flat spacetimes. With the help of replica wormholes, we find that experiments of asymptotic observers are consistent with black holes as unitary quantum systems, with density of states given by the Bekenstein-Hawking formula. However, this comes at the cost of superselection sectors associated with the state of baby universes. Spacetimes studied by Polchinski and Strominger in 1994 provide a simple illustration of the associated concepts and techniques, and we argue them to be a natural late-time extrapolation of replica wormholes. The work aims to be self-contained and, in particular, to be accessible to readers who have not yet mastered earlier formulations of the ideas above.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2885
Author(s):  
Daniel Losada ◽  
Ameena Al-Sumaiti ◽  
Sergio Rivera

This article presents the development, simulation and validation of the uncertainty cost functions for a commercial building with climate-dependent controllable loads, located in Florida, USA. For its development, statistical data on the energy consumption of the building in 2016 were used, along with the deployment of kernel density estimator to characterize its probabilistic behavior. For validation of the uncertainty cost functions, the Monte-Carlo simulation method was used to make comparisons between the analytical results and the results obtained by the method. The cost functions found differential errors of less than 1%, compared to the Monte-Carlo simulation method. With this, there is an analytical approach to the uncertainty costs of the building that can be used in the development of optimal energy dispatches, as well as a complementary method for the probabilistic characterization of the stochastic behavior of agents in the electricity sector.


1998 ◽  
Vol 120 (1) ◽  
pp. 89-96 ◽  
Author(s):  
R. A. Van den Braembussche ◽  
H. Malys

A lumped parameter model to predict the high frequency pressure oscillations observed in a water brake dynamometer is presented. It explains how the measured low frequency variations of the torque are a consequence of the variation in amplitude of the high frequency flow oscillations. Based on this model, geometrical modifications were defined, aiming to suppress the oscillations while maintaining mechanical integrity of the device. An experimental verification demonstrated the validity of the model and showed a very stable operation of the modified dynamometer even at very low torque.


2014 ◽  
Vol 1077 ◽  
pp. 197-202
Author(s):  
D. Hernandez ◽  
E.J. Liu ◽  
J.H. Huang ◽  
Y.C. Liu

Reverberation chambers are used to create a diffuse incidence sound field, where multiple types of acoustic measurements can be performed. The chambers tend to have a large volume in order to extent the reverberation time. However, this requirement may be conditioned by the cost and the infrastructure limitations. This paper presents the design and construction of a small-scaled reverberation chamber of 3 m3 for middle-high frequency acoustic measurements. On the design, the acoustic characteristics of chamber are confirmed via finite element computer simulation. As case studies, absorption and scattering coefficients of several materials and diffusors are measured. The reverberation times needed for the measurements were obtained by the impulse response integration method. The small reverberation chamber demonstrated to be a reliable tool for middle and high frequency acoustic measurements.


2002 ◽  
Vol 29 (18) ◽  
pp. 40-1-40-4 ◽  
Author(s):  
C. Bertrand ◽  
M. F. Loutre ◽  
A. Berger

2013 ◽  
Vol 31 (10) ◽  
pp. 1731-1743 ◽  
Author(s):  
C. M. Huang ◽  
S. D. Zhang ◽  
F. Yi ◽  
K. M. Huang ◽  
Y. H. Zhang ◽  
...  

Abstract. Using a nonlinear, 2-D time-dependent numerical model, we simulate the propagation of gravity waves (GWs) in a time-varying tide. Our simulations show that when a GW packet propagates in a time-varying tidal-wind environment, not only its intrinsic frequency but also its ground-based frequency would change significantly. The tidal horizontal-wind acceleration dominates the GW frequency variation. Positive (negative) accelerations induce frequency increases (decreases) with time. More interestingly, tidal-wind acceleration near the critical layers always causes the GW frequency to increase, which may partially explain the observations that high-frequency GW components are more dominant in the middle and upper atmosphere than in the lower atmosphere. The combination of the increased ground-based frequency of propagating GWs in a time-varying tidal-wind field and the transient nature of the critical layer induced by a time-varying tidal zonal wind creates favorable conditions for GWs to penetrate their originally expected critical layers. Consequently, GWs have an impact on the background atmosphere at much higher altitudes than expected, which indicates that the dynamical effects of tidal–GW interactions are more complicated than usually taken into account by GW parameterizations in global models.


Sensors ◽  
2015 ◽  
Vol 15 (2) ◽  
pp. 2944-2963 ◽  
Author(s):  
Erhu Wei ◽  
Shuanggen Jin ◽  
Lihua Wan ◽  
Wenjie Liu ◽  
Yali Yang ◽  
...  

2000 ◽  
Vol 7 (1) ◽  
pp. 72-78 ◽  
Author(s):  
P. Kern ◽  
M. Kron ◽  
K. Hiesche

ABSTRACT The performance of rat liver and HEp-2 in the detection of antinuclear antibodies (ANA) was studied by two independent sites and compared against an ANA enzyme immunoassay (EIA) screen and EIA systems for the measurement of antibodies to double-stranded DNA (dsDNA) and ENA. Sixty-two sera from patients with connective tissue disease (CTD) and 398 from controls suffering from other disorders were included. The level of agreement was, for HEp-2 and rat liver (within one site), 82.0% (ANA positive/ANA negative) and 51.0% (ANA pattern); and for HEp2- and HEp-2 (between sites), 71.8 and 86.5%. On sera with the ANA homogeneous pattern, the measurement of anti-ENA EIA added little to the detection rate with anti-dsDNA EIA alone. On ANA speckled sera, the EIA reactivity depended on the reaction of the mitotic cells: while sera with positive mitoses reacted similarly to ANA homogeneous sera, in those with negative mitoses the measurement of anti-ENA added about 10% to the detection rate achieved with anti-dsDNA alone. The measurement of anti-Scl-70 and anti-Jo-1 did not markedly improve the positive rate with classical ENA (anti-SSA, -SSB, -Sm, and -RNP) alone, raising doubts about the cost efficiency of including these measurements in unselected sera. The ANA EIA identified patients with CTD at a rate similar to that for rat liver and HEp-2. However, up to 98% of the sera found to be negative by ANA EIA but positive by use of rat liver and HEp-2 were from controls. Thus, the ANA EIA may possible be used as an alternative screen, particularly in laboratories with a high frequency of sera from patients not suffering from CTD.


Sign in / Sign up

Export Citation Format

Share Document