Endometrial stromal cell proteomic analysis reveals LIM and SH3 protein 1 (LASP1) plays important roles in the progression of adenomyosis

2021 ◽  
Vol 27 (3) ◽  
Author(s):  
Faying Liu ◽  
Zengming Li ◽  
Jiubai Guo ◽  
Shufen Fang ◽  
Jiangyan Zhou ◽  
...  

Abstract Adenomyosis is one of the most common gynecological disorders that the molecular events underlying its pathogenesis remain not fully understood. Prior studies have shown that endometrial stromal cells (ESCs) played crucial roles in the pathogenesis of adenomyosis. In this study, we utilized two-dimensional gel electrophoresis combined with protein identification by mass spectrometry (2D/MS) proteomics analysis to compare the differential protein expression profile between the paired eutopic and ectopic ESCs (EuESCs and EcESCs) in adenomyosis, and a total of 32 significantly altered protein spots were identified. Among which, the expression of LIM and SH3 protein 1 (LASP1) was increased significantly in EcESCs compared to EuESCs. Immunohistochemical assay showed that LASP1 was overexpressed in the stromal cells of ectopic endometriums compared to eutopic endometriums; further functional analyses revealed that LASP1 overexpression could enhance cell proliferation, migration and invasion of EcESCs. Furthermore, we also showed that the dysregulated expression of LASP1 in EcESCs was associated with DNA hypermethylation in the promoter region of the LASP1 gene. However, the detailed molecular mechanisms of enhancing cell proliferation, invasion and migration caused by upregulated LASP1 in adenomyosis needs further study. For the first time, our data suggested that LASP1 plays important roles in the pathogenesis of adenomyosis, and could serve as a prognostic biomarker of adenomyosis.

Author(s):  
Xiaoou Li ◽  
Wenqian Xiong ◽  
Xuefeng Long ◽  
Xin Dai ◽  
Yuan Peng ◽  
...  

Abstract N6-methyladenosine (m6A), one of the most abundant RNA modifications, is involved in the progression of many diseases, but its role and related molecular mechanisms in endometriosis remain unknown. To address these issues, we detected m6A levels in normal, eutopic and ectopic endometrium and found the m6A levels decreased in eutopic and ectopic endometrium compared with normal endometrium. In addition, we proved that methyltransferase-like 3 (METTL3) downregulation accounted for m6A reduction in endometriosis. Furthermore, we observed that METTL3 knockdown facilitated the migration and invasion of human endometrial stromal cells (HESCs), while METTL3 overexpression exerted opposite effects, suggesting that METTL3 downregulation might contribute to endometriosis development by enhancing cellular migration and invasion. Mechanistically, METTL3-dependent m6A was involved in the DGCR8-mediated maturation of primary microRNA126 (miR126, pri-miR126). Moreover, miR126 inhibitor significantly enhanced the migration and invasion of METTL3-overexpressing HESCs, whereas miR126 mimics attenuated the migration and invasion of METTL3-silenced HESCs. Our study revealed the METTL3/m6A/miR126 pathway, whose inhibition might contribute to endometriosis development by enhancing cellular migration and invasion. It also showed that METTL3 might be a novel diagnostic biomarker and therapeutic target for endometriosis.


Author(s):  
Xiali Tang ◽  
Ying Zheng ◽  
Demin Jiao ◽  
Jun Chen ◽  
Xibang Liu ◽  
...  

Background: Small Cell Lung Cancer (SCLC) represents the most aggressive pulmonary neoplasm and is often diagnosed at late stage with limited survival, despite combined chemotherapies. The purpose of this study was to investigate the effect of anlotinib on SCLC and the potential molecular mechanisms. Methods: Cell viability was assessed by CCK-8 assay to determine the adequate concentration of anlotinib. Then, effects of anlotinib on cell apoptosis, cell cycle distribution, migration and invasion were analyzed by flow cytometry, PI staining, wound healing assay and transwell assay, respectively. The protein expression of c-met and ERK1/2 pathways in H446 cells were assessed by western blot analysis. Result: In this study, we found that anlotinib significantly reduced the cell viability of H446 cells, induced G2/M cell cycle arrest and decreased invasion and migration of H446 cells. Futhermore, we also found that anlotinib could suppress c-met signal transduction and activate the ERK1/2 pathway in H446 cells. More importantly, c-met was involved in the effects of anlotinib on migration and invasion in H446 cells. Conclusion: Taken together, our results demonstrated that anlotinib was a potential anticancer agent that inhibited cell proliferation, migration and invasion via suppression of the c-met pathway and activation of the ERK1/2 pathway in H446 cells.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Rui-Ning Liang ◽  
Pei-Shuang Li ◽  
Yang Zou ◽  
Yu-Ling Liu ◽  
Zhen Jiang ◽  
...  

Endometriosis is a common gynecological condition in childbearing age women and its therapy in modern medicine achieves usually temporary cure. Ping-Chong-Jiang-Ni formula (PCJNF), a Chinese herbal medicine (CHM), was shown to be clinically effective on endometriosis. Meanwhile, c-Jun N-terminal kinase (JNK) signaling pathway was involved in the therapeutic process of CHM on endometriosis. Here, we explored the effect of PCJNF on the ectopic endometrial stromal cells (EESCs) from endometriosis and test whether JNK signaling was involved. After being treated with PCJNF-containing serum obtained from Sprague Dawley rat, cell proliferation, migration, invasion, and apoptosis were evaluated in EESCs, and the total and phosphorylated JNK, ERK, and p38 proteins were detected. Our results showed that PCJNF could suppress cell proliferation, migration, and invasion and induce apoptosis in EESCs. The suppressed proliferation and increased apoptosis were dependent on JNK activation. Additionally, PCJNF caused cell cycle arrest at G2/M phase and this effect was mediated by JNK signaling, while the decreased cell migration and invasion treated by PCJNF were independent of JNK signaling. In summary, our results provided the first evidence that PCJNF could suppress cell proliferation, migration, and invasion, while increasing apoptosis in EESCs, and the suppressed proliferation and enhanced apoptosis were mediated by JNK signaling.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Dan Sun ◽  
Yiting Wang ◽  
Li Wang ◽  
Xin Guo

The relevance of miRNA- (miR-) 342 to endometriosis has been highlighted, while its function in regulating the malignant-like phenotype of endometrial stromal cells which demonstrate epigenetic abnormalities that alter expression of transcription factors, remains unclear. Therefore, we sought to characterize the effects of miR-342 in endometrial stromal cell proliferation by regulating Annexin A2 (ANXA2). We first characterized the levels of miR-342 and ANXA2 in 31 cases of normal endometrium from patients with grade II-III cervical intraepithelial neoplasia or patients with hysterectomy versus ectopic endometrial tissues of 42 patients with endometriosis. miR-342 was upregulated, while ANXA2 was downregulated in ectopic endometrial tissues. Bioinformatics website and dual-luciferase reporter assay revealed that miR-342 negatively modulated ANXA2 expression. Following loss- and gain-of-function approaches, CCK-8, Transwell, and flow cytometry demonstrated that overexpression of miR-342 markedly increased cell proliferation, migration, and invasion but inhibited cell apoptotic ratio of endometrial stromal cells, which was reversed by ANXA2 elevation. Further, overexpressed miR-342 activated the PI3K/AKT/mTOR signaling pathway, as evidenced by upregulated levels of p-PI3K/PI3K, p-AKT/AKT, and p-mTOR/mTOR. Taken together, miR-342 targets ANXA2 to activate the PI3K/AKT/mTOR signaling pathway, thereby promoting the malignant-like phenotype of endometrial stromal cells, highlighting miR-342 inhibition as a promising approach for the treatment of endometriosis.


2015 ◽  
Vol 37 (3) ◽  
pp. 1123-1133 ◽  
Author(s):  
Wenbo Zhang ◽  
Chen Zou ◽  
Lei Pan ◽  
Ying Xu ◽  
Weidong Qi ◽  
...  

Background: microRNAs (miRNAs) are small non-coding RNAs and have been shown to play a crucial role in the colorectal cancer (CRC) tumorigenesis and progression. The aim of this study was to investigate the clinical significance and prognostic value of miR-140-5p in CRC. The exact functions and the underlying molecular mechanisms of miR-140-5p in CRC was further determined. Methods: miR-140-5p expression was detected in CRC samples, their adjacent nontumor tissues as well as CRC cell lines by RT-qPCR. Cell proliferation was detected using CCK-8, and cell invasion and migration were evaluated using Transwell assay. The direct regulation of VEGFA by miR-140-5p was identified using luciferase reporter assay. Results: miR-140-5p was significantly dowregulated in CRC tissues and cell lines. Downregulation of miR-140-5p was significantly correlated with advanced CRC stage and poorer overall survival. Both gain-of-function and loss of function studies demonstrated that miR-140-5p acted as a tumor suppressor by inhibiting cell proliferation, migration and invasion. Integrated analysis identified VEGFA as a direct and functional target gene of miR-140-5p. Silencing VEGFA by small interfering RNA (siRNA) resembled the phenotype resulting from ectopic miR-140-5p expression, while overexpression of VEGFA attenuated the effect of miR-140-5p on CRC cells. Conclusions: Our results suggested a tumor suppressive role of miR-140-5p in CRC tumorigenesis and progression by targeting VEGFA.


2018 ◽  
Vol 18 (7) ◽  
pp. 1025-1031
Author(s):  
Cheng Luo ◽  
Di Wu ◽  
Meiling Chen ◽  
Wenhua Miao ◽  
Changfeng Xue ◽  
...  

Background: Different saponins from herbs have been used as tonic or functional foods, and for treatment of various diseases including cancers. Although clinical data has supported the function of these saponins, their underlying molecular mechanisms have not been well defined. Methods: With the simulated hypoxia created by 8 hours of Cu++ exposure and following 24 hour incubation with different concentration of saponins in HepG2 cells for MTT assay, migration and invasion assays, and for RT-PCR, and with each group of cells for immunofluorescence observation by confocal microscopy. Results: ZC-4 had the highest rate of inhibition of cell proliferation by MTT assay, and the highest inhibition of migration rate by in vitro scratch assay, while ZC-3 had the highest inhibition of invasion ratio by transwell assay. Under the same simulated hypoxia, the molecular mechanism of saponin function was conducted by measuring the gene expression of Hypoxia Inducible Factor (HIF)-1α through RT-PCR, in which ZC-3 showed a potent inhibition of gene HIF-1α. For the protein expression by immunofluorescence staining with confocal microscopy, HIF-1α was also inhibited by saponins, with the most potent one being ZC-4 after eight hours’ relatively hypoxia incubation. Conclusion: Saponins ZC-4 and ZC-3 have the potential to reduce HepG2 cell proliferation, migration and invasion caused by hypoxia through effectively inhibiting the gene and protein expression of HIF-1α directly and as antioxidant indirectly


2019 ◽  
Vol 14 (1) ◽  
pp. 440-447
Author(s):  
Chunhui Dong ◽  
Yihui Liu ◽  
Guiping Yu ◽  
Xu Li ◽  
Ling Chen

AbstractLBHD1 (C11ORF48) is one of the ten potential tumor antigens identified by immunoscreening the urinary bladder cancer cDNA library in our previous study. We suspect that its expression is associated with human bladder cancer. However, the exact correlation remains unclear. To address the potential functional relationship between LBHD1 and bladder cancer, we examined the LBHD1 expression at the mRNA and protein level in 5 different bladder cancer cell lines: J82, T24, 253J, 5637, and BLZ-211. LBHD1 high and low expressing cells were used to investigate the migration, invasion, and proliferation of bladder cancer cells following transfection of LBHD1 with siRNA and plasmids, respectively. Our experiment showed that the degree of gene expression was positively related to the migration and invasion of the cancer cells while it had little effect on cell proliferation. Knocking down LBHD1 expression with LBHD1 siRNA significantly attenuated cell migration and invasion in cultured bladder cancer cells, and overexpressing LBHD1 with LBHD1 cDNA plasmids exacerbated cell migration and invasion. Nevertheless, a difference in cell proliferation after transfection of LBHD1 siRNA and LBHD1 cDNA plasmids was not found. Our findings suggest that LBHD1 might play a role in cell migration and invasion.


2021 ◽  
pp. 1-9
Author(s):  
Huan Guo ◽  
Baozhen Zeng ◽  
Liqiong Wang ◽  
Chunlei Ge ◽  
Xianglin Zuo ◽  
...  

BACKGROUND: The incidence of lung cancer in Yunnan area ranks firstly in the world and underlying molecular mechanisms of lung cancer in Yunnan region are still unclear. We screened a novel potential oncogene CYP2S1 used mRNA microassay and bioinformation database. The function of CYP2S1 in lung cancer has not been reported. OBJECTIVE: To investigate the functions of CYP2S1 in lung cancer. METHODS: Immunohistochemistry and Real-time PCR were used to verify the expression of CYP2S1. Colony formation and Transwell assays were used to determine cell proliferation, invasion and migration. Xenograft assays were used to detected cell growth in vivo. RESULTS: CYP2S1 is significantly up-regulated in lung cancer tissues and cells. Knockdown CYP2S1 in lung cancer cells resulted in decrease cell proliferation, invasion and migration in vitro. Animal experiments showed downregulation of CYP2S1 inhibited lung cancer cell growth in vivo. GSEA analysis suggested that CYP2S1 played functions by regulating E2F targets and G2M checkpoint pathway which involved in cell cycle. Kaplan-Meier analysis indicated that patients with high CYP2S1 had markedly shorter event overall survival (OS) time. CONCLUSIONS: Our data demonstrate that CYP2S1 exerts tumor suppressor function in lung cancer. The high expression of CYP2S1 is an unfavorable prognostic marker for patient survival.


Sign in / Sign up

Export Citation Format

Share Document