Nanoionics and its device applications

Author(s):  
T. Hasegawa ◽  
K. Terabe ◽  
T. Sakamoto ◽  
M. Aono

This article discusses nanoionics phenomena and their applications for making new types of electronic devices. It begins with an overview of ionic conductive materials, which are classified into two categories in terms of the charged particles: solid electrolytes in which only ions contribute to the current flow, and mixed electronic and ionic conductors in which bothelectrons and ions contribute to the current flow. It then describes the solid electrochemical reaction that controls metal-filament growth and shrinkage in an atomic switch, along with the fundamentals of an atomic switch. It also considers new types of atomic switches and several applications of atomic switches. Finally, it highlights some novel characteristics of the atomic switch such as small size, low power consumption, non-volatility, and low on-resistance. These characteristics enable us to improve the performance of present-day electronic devices.

2020 ◽  
Author(s):  
Saneyuki Ohno ◽  
Tim Bernges ◽  
Johannes Buchheim ◽  
Marc Duchardt ◽  
Anna-Katharina Hatz ◽  
...  

<p>Owing to highly conductive solid ionic conductors, all-solid-state batteries attract significant attention as promising next-generation energy storage devices. A lot of research is invested in the search and optimization of solid electrolytes with higher ionic conductivity. However, a systematic study of an <i>interlaboratory reproducibility</i> of measured ionic conductivities and activation energies is missing, making the comparison of absolute values in literature challenging. In this study, we perform an uncertainty evaluation via a Round Robin approach using different Li-argyrodites exhibiting orders of magnitude different ionic conductivities as reference materials. Identical samples are distributed to different research laboratories and the conductivities and activation barriers are measured by impedance spectroscopy. The results show large ranges of up to 4.5 mScm<sup>-1</sup> in the measured total ionic conductivity (1.3 – 5.8 mScm<sup>-1</sup> for the highest conducting sample, relative standard deviation 35 – 50% across all samples) and up to 128 meV for the activation barriers (198 – 326 meV, relative standard deviation 5 – 15%, across all samples), presenting the necessity of a more rigorous methodology including further collaborations within the community and multiplicate measurements.</p>


2019 ◽  
Vol 58 (1) ◽  
pp. 248-270 ◽  
Author(s):  
Chandra Sekhar Dash ◽  
S. R. S. Prabaharan

Abstract Use of solid state ionic conductors the so-called Solid Electrolytes has brought new impetus to the field of solid state memories namely resistive random access memory (Re-RAM). In this review article, to begin we present the detailed understanding on the basics of solid electrolytes. Later, the same has been reviewed focusing on its application in novel solid state memory applications. Few examples of solid electrolytes are considered and their impact on the state-of-art research in this domain is discussed in detail. An in-depth analysis on the fundamentals of Resistive switching mechanism involved in various classes of Memristive devices viz., Electrochemical Metallization Memories (ECM) and Valence change Memories (VCM). A few important applications of Memristors such as Neuristor and artificial synapse in neuromorphic computing are reviewed as well. Finally, the most anticipated energy efficient battery-like cells as artificial synapse in brain-inspired computing is also covered.


2020 ◽  
Vol 2 (9) ◽  
pp. 4172-4178
Author(s):  
Matias Kalaswad ◽  
Bruce Zhang ◽  
Xuejing Wang ◽  
Han Wang ◽  
Xingyao Gao ◽  
...  

Integration of highly anisotropic multiferroic thin films on silicon substrates is a critical step towards low-cost devices, especially high-speed and low-power consumption memories.


1998 ◽  
Vol 09 (01) ◽  
pp. 65-99 ◽  
Author(s):  
MICHAEL S. SHUR ◽  
MICHEL DYAKONOV

In deep submicron silicon MOSFETs, GaAs-based HEMTs, and in new emerging heterostructure systems, such as AlGaN/GaN, electrons forming a two-dimensional (2D) conducting channel exhibit new interesting effects that might find important device applications. Some of these effects are related to the space dependence of the electron mass. Other effects are linked to a large sheet electron concentration, when electrons behave not as a 2D gas but rather as a 2D electron electron fluid. We consider plasma effects in this fluid and discuss plasma wave electronic devices that rely on these effects. We also discuss the properties of 2D electrons in silicon devices, where plasma effects might also play an important role in deep submicron MOSFETs.


Science ◽  
2013 ◽  
Vol 341 (6149) ◽  
pp. 984-987 ◽  
Author(s):  
Christoph Keplinger ◽  
Jeong-Yun Sun ◽  
Choon Chiang Foo ◽  
Philipp Rothemund ◽  
George M. Whitesides ◽  
...  

Existing stretchable, transparent conductors are mostly electronic conductors. They limit the performance of interconnects, sensors, and actuators as components of stretchable electronics and soft machines. We describe a class of devices enabled by ionic conductors that are highly stretchable, fully transparent to light of all colors, and capable of operation at frequencies beyond 10 kilohertz and voltages above 10 kilovolts. We demonstrate a transparent actuator that can generate large strains and a transparent loudspeaker that produces sound over the entire audible range. The electromechanical transduction is achieved without electrochemical reaction. The ionic conductors have higher resistivity than many electronic conductors; however, when large stretchability and high transmittance are required, the ionic conductors have lower sheet resistance than all existing electronic conductors.


Materials ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1893 ◽  
Author(s):  
Haneul Kang ◽  
Hyunji Kim ◽  
Jihye An ◽  
Siyeon Choi ◽  
Jinho Yang ◽  
...  

As electronic devices and mainboards become smaller, the need for thermal conductive materials having excellent internal heat dissipation is increasing. In this study, nano thermal grease was prepared by mixing in copper nanopowder, which is used as a heat transfer medium in thermal grease, which is a kind of thermal conductive material, with silicon oil. In addition, copper powder was mixed with graphene and alumina, respectively, and the thermal conductivity performance was compared. As a result, the thermal conductivity improved by 4.5 W/m·k over the silicon base, and the upward trend of thermal conductivity increased steadily up to 15 vol. %, and the increasing trend decreased after 20 vol. %. In addition, the increased rate of thermal conductivity from 0 to 5 vol. % and 10 to 15 vol. % was the largest.


Electronics ◽  
2018 ◽  
Vol 7 (10) ◽  
pp. 225 ◽  
Author(s):  
Chenxi Yue ◽  
Shuye Jiang ◽  
Hao Zhu ◽  
Lin Chen ◽  
Qingqing Sun ◽  
...  

This review briefly describes the development of synthetic topological insulator materials in the application of advanced electronic devices. As a new class of quantum matter, topological insulators with insulating bulk and conducting surface states have attracted attention in more and more research fields other than condensed matter physics due to their intrinsic physical properties, which provides an excellent basis for novel nanoelectronic, optoelectronic, and spintronic device applications. In comparison to the mechanically exfoliated samples, the newly emerging topological insulator nanostructures prepared with various synthetical approaches are more intriguing because the conduction contribution of the surface states can be significantly enhanced due to the larger surface-to-volume ratio, better manifesting the unique properties of the gapless surface states. So far, these synthetic topological insulator nanostructures have been implemented in different electrically accessible device platforms via electrical, magnetic and optical characterizations for material investigations and device applications, which will be introduced in this review.


Sign in / Sign up

Export Citation Format

Share Document