scholarly journals A Model to Account for Potential Correlations Between Growth of Loblolly Pine and Changing Ambient Carbon Dioxide Concentrations

2003 ◽  
Vol 27 (4) ◽  
pp. 279-284 ◽  
Author(s):  
James A. Westfall ◽  
Ralph L. Amateis

Abstract Continuously increasing concentrations of atmospheric carbon dioxide (CO2) may be leading to enhanced growth rates for loblolly pine. In order to plan effectively silvicultural regimes and harvesting schedules, managers of loblolly pine plantations may wish to account for these potential changes when making growth and yield projections. Data from 94 unthinned plots across the Southeast were used to develop an equation that utilizes change in ambient CO2 concentration and initial site quality to predict change in site index (ΔSI). For a given change in CO2 concentration, a greater increase in site index is afforded to lower quality sites. The ΔSI equation was incorporated into a loblolly pine growth model. Simulations with and without site index adjustments were performed and plot volume estimates were compared to observed values. Mean percent residual dropped from 9.7% with no adjustment to -0.5% when ΔSI was employed. Forest managers can use this model to evaluate how possible CO2-induced growth increases may affect long-term timber yields and management strategies. South. J. Appl. For. 27(4):279–284.

2016 ◽  
Vol 56 (1) ◽  
pp. 108 ◽  
Author(s):  
Mei Bai ◽  
David W. T. Griffith ◽  
Frances A. Phillips ◽  
Travis Naylor ◽  
Stephanie K. Muir ◽  
...  

Accurate measurements of methane (CH4) emissions from feedlot cattle are required for verifying greenhouse gas (GHG) accounting and mitigation strategies. We investigate a new method for estimating CH4 emissions by examining the correlation between CH4 and carbon dioxide (CO2) concentrations from two beef cattle feedlots in Australia representing southern temperate and northern subtropical locations. Concentrations of CH4 and CO2 were measured at the two feedlots during summer and winter, using open-path Fourier transform infrared spectroscopy. There was a strong correlation for the concentrations above background of CH4 and CO2 with concentration ratios of 0.008 to 0.044 ppm/ppm (R2 >0.90). The CH4/CO2 concentration ratio varied with animal diet and ambient temperature. The CH4/CO2 concentration ratio provides an alternative method to estimate CH4 emissions from feedlots when combined with CO2 production derived from metabolisable energy or heat production.


2021 ◽  
Author(s):  
Andres Fortunato ◽  
Helmut Herwartz ◽  
Ramón E. López ◽  
Eugenio Figueroa

Abstract We study the long-run dynamic and predictive connection between atmospheric carbon dioxide (CO2) concentration and the probability of hydrometeorological disasters. For a panel of 193 countries over the period 1970-2016 we estimate the probabilities of hydrometeorological disasters at country levels by means of Bayesian sampling techniques. We then separate the effects of climatological and socio-demographic factors (used as proxies for exposure and vulnerability) and other country-specific factors, from a global probability of disasters (GPOD). Finally, we subject these global probability time paths to a cointegration analysis with CO2 concentration and run projections to year 2040 of the GPOD conditional on nine Shared Socioeconomic Pathways scenarios. We detect a stable long-term relation between CO2 accumulation and the GPOD that allows to determine projections of the latter process conditional on the former. This way, we demonstrate that generally and readily available statistical data on CO2 global atmospheric concentrations can be used as a conceptually meaningful, statistically valid and policy useful predictor of the probability of occurrence of (global) hydrometeorological disasters.


Author(s):  
Ayman EL Sabagh ◽  
Akbar Hossain ◽  
Mohammad Sohidul Islam ◽  
Muhammad Aamir Iqbal ◽  
Ali Raza ◽  
...  

The rising concentration of atmospheric carbon dioxide (aCO2) and increasing temperature are the main reasons for climate change, which are significantly affecting crop production systems in this world. However, the elevated carbon dioxide (CO2) concentration can improve the growth and development of crop plants by increasing photosynthetic rate (higher availability of photoassimilates). The combined effects of elevated CO2 (eCO2) and temperature on crop growth and carbon metabolism are not adequately recognized, while both eCO2 and temperature triggered noteworthy changes in crop production. Therefore, to increase crop yields, it is important to identify the physiological mechanisms and genetic traits of crop plants which play a vital role in stress tolerance under the prevailing conditions. The eCO2 and temperature stress effects on physiological aspects as well as biochemical profile to characterize genotypes that differ in their response to stress conditions. The aim of this review is directed the open-top cavities to regulate the properties like physiological, biochemical, and yield of crops under increasing aCO2, and temperature. Overall, the extent of the effect of eCO2 and temperature response to biochemical components and antioxidants remains unclear, and therefore further studies are required to promote an unperturbed production system.


Author(s):  
Sumit Kumar Dey ◽  
B. Chakrabarti ◽  
R Prasanna ◽  
S. D. Singh ◽  
T J Purakayastha ◽  
...  

Increase in the concentration of atmospheric carbon dioxide (CO2) has significant impact on crop growth and productivity. A study was undertaken during the kharif season to study the impacts of elevated CO2 and cyanobacterial inoculation on growth and yield of mungbean crop under different doses of P using Free Air Carbon dioxide Enrichment (FACE) facility. The crop was grown under two CO2 levels i.e., ambient (400 µmol mol-1) and elevated (550 ± 20 µmol mol-1), with five levels of P (0, 8, 12, 16 and 20 mg P kg-1 soil) and 2 levels of calothrix sp. (with and without cyanobacteria) inoculation. Elevated CO2 level increased seed yield by 35.0% and biomass yield by 31.3%. Leaf area, photosynthesis rate and leaf chlorophyll content significantly increased at high CO2 level. Yield attributes such as number of pods plant-1, number of seeds pod-1 and test weight also increased at high CO2 level. Application of P and cyanobacterial inoculation further increased growth and yield of the crop. The study showed that application of P as well as cyanobacteria could help in improving productivity of legumes under elevated CO2 condition.


Forests ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 556
Author(s):  
Mauricio Zapata-Cuartas ◽  
Bronson P. Bullock ◽  
Cristian R. Montes ◽  
Michael B. Kane

Intensive loblolly pine (Pinus taeda L.) plantation management in the southeastern United States includes mid-rotation silvicultural practices (MRSP) like thinning, fertilization, competitive vegetation control, and their combinations. Consistent and well-designed long-term studies considering interactions of MRSP are required to produce accurate projections and evaluate management decisions. Here we use longitudinal data from the regional Mid-Rotation Treatment study established by the Plantation Management Research Cooperative (PMRC) at the University of Georgia across the southeast U.S. to fit and validate a new dynamic model system rooted in theoretical and biological principles. A Weibull pdf was used as a modifier function coupled with the basal area growth model. The growth model system and error projection functions were estimated simultaneously. The new formulation results in a compatible and consistent growth and yield system and provides temporal responses to treatment. The results indicated that the model projections reproduce the observed behavior of stand characteristics. The model has high predictive accuracy (the cross-validation variance explained was 96.2%, 99.7%, and 98.6%; and the prediction root mean square distance was 0.704 m, 19.1 trees ha−1, and 1.03 m2ha−1 for dominant height (DH), trees per hectare (N), and basal area (BA), respectively), and can be used to project the current stand attributes following combinations of MRSP and with different thinning intensities. Simulations across southern physiographic regions allow us to conclude that the most overall ranking of MRSP after thinning is fertilization + competitive vegetation control (Fert + CVC) > fertilization only (Fert) > competitive vegetation control only (CVC), and Fert + CVC show less than additive effect. Because of the model structure, the response to treatment changes with location, age of application, and dominant height growth as indicators of site quality. Therefore, the proposed model adequately represents regional growth conditions.


Plants ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 71
Author(s):  
María Carmen Antolín ◽  
María Toledo ◽  
Inmaculada Pascual ◽  
Juan José Irigoyen ◽  
Nieves Goicoechea

(1) Background: The associated increase in global mean surface temperature together with raised atmospheric carbon dioxide (CO2) concentration is exerting a profound influence on grapevine development (phenology) and grape quality. The exploitation of the local genetic diversity based on the recovery of ancient varieties has been proposed as an interesting option to cope with climate change and maintaining grape quality. Therefore, this research aimed to characterize the potential fruit quality of genotypes from seven local old grapevine varieties grown under climate change conditions. (2) Methods: The study was carried out on fruit-bearing cuttings (one cluster per plant) that were grown in pots in temperature gradient greenhouses (TGG). Two treatments were applied from fruit set to maturity: (1) ambient CO2 (400 ppm) and temperature (T) (ACAT) and (2) elevated CO2 (700 ppm) and temperature (T + 4 °C) (ECET). (3) Results: Results showed that some of the old genotypes tested remained quite stable during the climate change conditions in terms of fruit quality (mainly, total soluble solids and phenolic content) and of must antioxidant properties. (4) Conclusion: This research underlines the usefulness of exploiting local grapevine diversity to cope with climate change successfully, although further studies under field conditions and with whole plants are needed before extrapolating the results to the vineyard.


2021 ◽  
Author(s):  
Xiao Wang ◽  
Xiaoli Wei ◽  
Gaoyin Wu ◽  
Shengqun Chen

Abstract The study of plant responses to increases in atmospheric carbon dioxide (CO2) concentration is crucial to understand and to predict the effect of future global climate change on plant adaptation and evolution. Increasing amount of nitrogen (N) can promote the positive effect of CO2, while how N forms would modify the degree of CO2 effect is rarely studied. The aim of this study was to determine whether the amount and form of nitrogen (N) could mitigate the effects of elevated CO2 (eCO2) on enzyme activities related to carbon (C) and N metabolism, the C/N ratio, and growth of Phoebe bournei (Hemsl.) Y.C. Yang. One-year-old P. bournei seedlings were grown in an open-top air chamber under either an ambient CO2 (aCO2) (350 ± 70 μmol•mol−1) or an eCO2 (700 ± 10 μmol•mol−1) concentration and cultivated in soil treated with either moderate (0.8 g per seedling) or high applications (1.2 g per seedling) of nitrate or ammonium. In seedlings treated with a moderate level of nitrate, the activities of key enzymes involved in C and N metabolism (i.e., Rubisco, Rubisco activase and glutamine synthetase) were lower under eCO2 than under aCO2. By contrast, key enzyme activities (except GS) in seedlings treated with high nitrate or ammonium were not significantly different between aCO2 and eCO2 or higher under eCO2 than under aCO2. The C/N ratio of seedlings treated with moderate or high nitrate under eCO2was significantly changed compared with the seedlings grown under aCO2, whereas the C/N ratio of seedlings treated with ammonium was not significantly different between aCO2 and eCO2. Therefore, under eCO2, application of ammonium can be beneficial C and N metabolism and mitigate effects on the C/N ratio.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Philipp de Vrese ◽  
Tobias Stacke ◽  
Jeremy Caves Rugenstein ◽  
Jason Goodman ◽  
Victor Brovkin

AbstractSimple and complex climate models suggest a hard snowball – a completely ice-covered planet – is one of the steady-states of Earth’s climate. However, a seemingly insurmountable challenge to the hard-snowball hypothesis lies in the difficulty in explaining how the planet could have exited the glaciated state within a realistic range of atmospheric carbon dioxide concentrations. Here, we use simulations with the Earth system model MPI-ESM to demonstrate that terminal deglaciation could have been triggered by high dust deposition fluxes. In these simulations, deglaciation is not initiated in the tropics, where a strong hydrological cycle constantly regenerates fresh snow at the surface, which limits the dust accumulation and snow aging, resulting in a high surface albedo. Instead, comparatively low precipitation rates in the mid-latitudes in combination with high maximum temperatures facilitate lower albedos and snow dynamics that – for extreme dust fluxes – trigger deglaciation even at present-day carbon dioxide levels.


2016 ◽  
Author(s):  
C. Frankenberg ◽  
S. S. Kulawik ◽  
S. Wofsy ◽  
F. Chevallier ◽  
B. Daube ◽  
...  

Abstract. In recent years, space-borne observations of atmospheric carbon-dioxide (CO2) have become increasingly used in global carbon-cycle studies. In order to obtain added value from space-borne measurements, they have to suffice stringent accuracy and precision requirements, with the latter being less crucial as it can be reduced by just enhanced sample size. Validation of CO2 column averaged dry air mole fractions (XCO2) heavily relies on measurements of the Total Carbon Column Observing Network TCCON. Owing to the sparseness of the network and the requirements imposed on space-based measurements, independent additional validation is highly valuable. Here, we use observations from the HIAPER Pole-to-Pole Observations (HIPPO) flights from January 2009 through September 2011 to validate CO2 measurements from satellites (GOSAT, TES, AIRS) and atmospheric inversion models (CarbonTracker CT2013B, MACC v13r1). We find that the atmospheric models capture the XCO2 variability observed in HIPPO flights very well, with correlation coefficients (r2) of 0.93 and 0.95 for CT2013B and MACC, respectively. Some larger discrepancies can be observed in profile comparisons at higher latitudes, esp. at 300 hPa during the peaks of either carbon uptake or release. These deviations can be up to 4 ppm and hint at misrepresentation of vertical transport. Comparisons with the GOSAT satellite are of comparable quality, with an r2 of 0.85, a mean bias μ of −0.06 ppm and a standard deviation σ of 0.45 ppm. TES exhibits an r2 of 0.75, μ of 0.34 ppm and σ of 1.13 ppm. For AIRS, we find an r2 of 0.37, μ of 1.11 ppm and σ of 1.46 ppm, with latitude-dependent biases. For these comparisons at least 6, 20 and 50 atmospheric soundings have been averaged for GOSAT, TES and AIRS, respectively. Overall, we find that GOSAT soundings over the remote pacific ocean mostly meet the stringent accuracy requirements of about 0.5 ppm for space-based CO2 observations.


Sign in / Sign up

Export Citation Format

Share Document