scholarly journals Pathotype and Avirulence Gene Diversity of Pyricularia grisea in Thailand as Determined by Rice Lines Near-Isogenic for Major Resistance Genes

Plant Disease ◽  
2000 ◽  
Vol 84 (1) ◽  
pp. 60-70 ◽  
Author(s):  
Poonsak Mekwatanakarn ◽  
Wichai Kositratana ◽  
M. Levy ◽  
R. S. Zeigler

Five hundred twenty-seven isolates of Pyricularia grisea were collected from trap rice cultivars of indigenous and exotic origin across three seasons at five sites in Thailand. Single conidium isolates were inoculated onto 15 rice lines near-isogenic (NILs) for resistance genes, one recurrent parent, and two local cultivars. One hundred seventy-five pathotypes were identified, of which 160 were represented by fewer than eight isolates. Predicted pathotype number was estimated at greater than 450 for the study region. Significant differences in pathotype diversity were detected across sites, seasons, and among isolates collected from exotic versus indigenous hosts. Isolates and pathotypes with greater numbers of virulence genes (as inferred from compatibility with NILs) were less common than those with fewer virulence genes. Analysis of virulence distributions among isolates grouped according to their MGR586 DNA-fingerprint similarities (i.e., “lineages”) also showed that, for the most commonly represented lineages, isolates with fewer virulence genes predominated. Lineages represented by one or a few isolates had greater numbers of virulence genes. Lower frequency of recovery of isolates with accumulated virulence genes is consistent with an associated fitness penalty. Resistance genes Pi 1, Pi z-5, and Pi ta2 were broadly effective across this population, compatibility with Pi 1 and Pi z-5 was very rare, and no isolate combined compatibility with both genes. Well-represented (more than 20 isolates) MGR586 lineages showed specific incompatibilities with some NILs, but these were restricted to Pi 1 and Pi z-5. No combination of resistance genes would confer resistance across all lineages.

2003 ◽  
Vol 38 (2) ◽  
pp. 203-210 ◽  
Author(s):  
Anne Sitarama Prabhu ◽  
Emílio da Maia de Castro ◽  
Leila Garcês de Araújo ◽  
Rodrigo Fascin Berni

The objective of this work was to evaluate the resistance spectra of six elite breeding lines of rice, developed for improved yield and grain quality, in inoculation tests in the greenhouse and in the field. Forty-six isolates of Pyricularia grisea collected from the cultivar Primavera, 31 from the cultivar Maravilha and 19 from six elite breeding lines, totaling 96 were utilized for inoculations. Out of 11 international and 15 Brazilian pathotypes, IC-1, IB-9, and BD-16, respectively, were identified as most frequent isolates collected from the cultivar Primavera. The isolates retrieved from Maravilha belong to four international and 11 Brazilian pathotypes, the predominant ones being IB-9 and IB-49 and BB-1 and BB-21, respectively. Lines CNAs 8711 and CNAs 8983 showed resistant reaction to all test isolates from Maravilha, while CNAs 8983 was susceptible to three isolates of Primavera pertaining to the pathotype IC-1. A majority of isolates exhibiting compatible reaction to Primavera were incompatible to Maravilha and vice-versa.Field assessment of rice blast utilizing the area under disease progress curve as a criterion for measuring disease severity showed significant differences among the six breeding lines. The isolates of P. grisea exhibiting differential reaction on breeding lines can be utilized in pyramiding resistance genes in new upland rice cultivars.


2010 ◽  
Vol 45 (7) ◽  
pp. 671-679 ◽  
Author(s):  
Bruno Eduardo Cardozo de Miranda ◽  
Nelson Dias Suassuna ◽  
Ailton Reis

The objective of this work was to characterize 79 Phytophthora infestans isolates collected in tomato (Solanum lycopersicum) fields, as to mating type, mefenoxam sensitivity, and pathotype composition. The isolates were sampled in 2006 and 2007 in seven Brazilian states as well as in the Distrito Federal. They were characterised as to mating type (n=79), sensitivity to fungicide mefenoxam (n=79), and virulence to three major resistance genes Ph-1, Ph-2, and Ph-3/Ph-4 (n=62). All isolates were of the mating type A1. Resistant isolates were detected in all sampled states, and its average frequency was superior to 50%. No difference was detected in pathotype diversity, neither between subpopulations collected in 2006 and 2007 nor between isolates grouped as resistant or intermediately sensitive to mefenoxam. All major resistance genes were overcome at different frequencies: Ph-1, 88.7%; Ph-2, 64.5%; and Ph-3/Ph-4, 25.8%. Isolates with virulence genes able to overcome all major resistance genes were detected at low frequencies. Tomato breeding programs in Brazil must avoid the development of cultivars with resistance based exclusively on major genes.


2019 ◽  
Vol 29 (4) ◽  
pp. 336-344
Author(s):  
MS Haque ◽  
T Tabassum ◽  
NR Saha ◽  
MS Islam

Number of grains per panicle is a limiting factor for the yield of aromatic rice. Toovercome this limitation, itmight behelpful to screenaromatic rice using markers linked to grain number.In this study, an elementary DNA fingerprinting database of the nine aromatic rice cultivars was built using four SSR primer pairs linked to Gn1 gene responsible for grain number in rice. For genotyping of aromatic rice cultivars, DNA was extracted from leaf samples using IRRI standard protocol. Allele scoring was done by using a computer based program Alpha Ease FC 4.0 and data were analyzed by Power Marker version 3.25 software. Nei’s genetic distance value and similarity werecomputed. From the analysis, it was found that a total of 21 alleles were detected with an average number of 5.25 alleles per locus having PIC values ranging from 0.3402 (RM5493) to 0.7883 (RM3452) and the average value 0.6629. The highest gene diversity (0.8148) was observed in loci RM3452,and the lowest gene diversity (0.3404) was observed in loci RM5493.From the study, it can be stated that all of the aromatic rice germplasm have bands of the gene that influence the grain but they showed genetic variability.Information obtained from genotyping of varieties helped to analyze the genetic diversity within and among closely related crop varieties which has the potential for crop improvement and to meet the diverse goals like producing cultivars with increased yield of aromatic rice. Progressive Agriculture 29 (4): 336-344, 2018


Diversity ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 230
Author(s):  
Shan Wan ◽  
Min Xia ◽  
Jie Tao ◽  
Yanjun Pang ◽  
Fugen Yu ◽  
...  

In this study, we used a metagenomic approach to analyze microbial communities, antibiotic resistance gene diversity, and human pathogenic bacterium composition in two typical landfills in China. Results showed that the phyla Proteobacteria, Bacteroidetes, and Actinobacteria were predominant in the two landfills, and archaea and fungi were also detected. The genera Methanoculleus, Lysobacter, and Pseudomonas were predominantly present in all samples. sul2, sul1, tetX, and adeF were the four most abundant antibiotic resistance genes. Sixty-nine bacterial pathogens were identified from the two landfills, with Klebsiella pneumoniae, Bordetella pertussis, Pseudomonas aeruginosa, and Bacillus cereus as the major pathogenic microorganisms, indicating the existence of potential environmental risk in landfills. In addition, KEGG pathway analysis indicated the presence of antibiotic resistance genes typically associated with human antibiotic resistance bacterial strains. These results provide insights into the risk of pathogens in landfills, which is important for controlling the potential secondary transmission of pathogens and reducing workers’ health risk during landfill excavation.


Genetics ◽  
1999 ◽  
Vol 152 (1) ◽  
pp. 401-412 ◽  
Author(s):  
Randall F Warren ◽  
Peter M Merritt ◽  
Eric Holub ◽  
Roger W Innes

Abstract The RPS5 disease resistance gene of Arabidopsis mediates recognition of Pseudomonas syringae strains that possess the avirulence gene avrPphB. By screening for loss of RPS5-specified resistance, we identified five pbs (avrPphB susceptible) mutants that represent three different genes. Mutations in PBS1 completely blocked RPS5-mediated resistance, but had little to no effect on resistance specified by other disease resistance genes, suggesting that PBS1 facilitates recognition of the avrPphB protein. The pbs2 mutation dramatically reduced resistance mediated by the RPS5 and RPM1 resistance genes, but had no detectable effect on resistance mediated by RPS4 and had an intermediate effect on RPS2-mediated resistance. The pbs2 mutation also had varying effects on resistance mediated by seven different RPP (recognition of Peronospora parasitica) genes. These data indicate that the PBS2 protein functions in a pathway that is important only to a subset of disease-resistance genes. The pbs3 mutation partially suppressed all four P. syringae-resistance genes (RPS5, RPM1, RPS2, and RPS4), and it had weak-to-intermediate effects on the RPP genes. In addition, the pbs3 mutant allowed higher bacterial growth in response to a virulent strain of P. syringae, indicating that the PBS3 gene product functions in a pathway involved in restricting the spread of both virulent and avirulent pathogens. The pbs mutations are recessive and have been mapped to chromosomes I (pbs2) and V (pbs1 and pbs3).


AMB Express ◽  
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Quan Li ◽  
Jian Yin ◽  
Zheng Li ◽  
Zewei Li ◽  
Yuanzhao Du ◽  
...  

AbstractSalmonella is an important food-borne pathogen associated with public health and high economic losses. To investigate the prevalence and the characteristics of Salmonella in a pig slaughterhouse in Yangzhou, a total of 80 Salmonella isolates were isolated from 459 (17.43%) samples in 2016–2017. S. Derby (35/80, 43.75%) was the most prevalent, followed by S. Rissen (16/80, 20.00%) and S. Newlands (11/80, 13.75%). The highest rates of susceptibility were observed to cefoxitin (80/80, 100.0%) and amikacin (80/80, 100.0%), followed by aztreonam (79/80, 98.75%) and nitrofurantoin (79/80, 98.75%). The highest resistance rate was detected for tetracycline (65/80, 81.25%), followed by ampicillin (60/80, 75.00%), bactrim (55/80, 68.75%), and sulfisoxazole (54/80, 67.50%). Overall, 91.25% (73/80) of the isolates were resistant to at least one antibiotic, while 71.25% (57/80) of the isolate strains were multidrug resistant in the antimicrobial susceptibility tested. In addition, 86.36% (19/22) of the 22 antimicrobial resistance genes in the isolates were identified. Our data indicated that the resistance to certain antimicrobials was significantly associated, in part, with antimicrobial resistance genes. Furthermore, 81.25% (65/80) isolates harbored the virulence gene of mogA, of which 2 Salmonella Typhimurium isolates carried the mogA, spvB and spvC virulence genes at the same time. The results showed that swine products in the slaughterhouse were contaminated with multidrug resistant Salmonella commonly, especially some isolates carry the spv virulence genes. The virulence genes might facilitate the dissemination of the resistance genes to consumers along the production chain, suggesting the importance of controlling Salmonella during slaughter for public health.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Xuehan Li ◽  
Tao Huang ◽  
Kai Xu ◽  
Chenglin Li ◽  
Yirong Li

Abstract Background There have been no reports regarding the molecular characteristics, virulence features, and antibiotic resistance profiles of Staphylococcus aureus (S. aureus) from Hainan, the southernmost province of China. Methods Two hundred twenty-seven S. aureus isolates, consisting of 76 methicillin-resistant S. aureus (MRSA) and 151 methicillin-susceptible S. aureus (MSSA), were collected in 2013–2014 and 2018–2019 in Hainan, and investigated for their molecular characteristics, virulence genes, antibiotic resistance profiles and main antibiotic resistance genes. Results Forty sequence types (STs) including three new STs (ST5489, ST5492 and ST5493), and 79 Staphylococcal protein A (spa) types were identified based on multilocus sequence typing (MLST) and spa typing, respectively. ST398 (14.1%, 32/227) was found to be the most prevalent, and the prevalence of ST398-MSSA increased significantly from 2013 to 2014 (5.5%, 5/91) to 2018–2019 (18.4%, 25/136). Seventy-six MRSA isolates were subject to staphylococcus chromosomal cassette mec (SCCmec) typing. SCCmec-IVa was the predominant SCCmec type, and specifically, ST45-SCCmec IVa, an infrequent type in mainland China, was predominant in S. aureus from Hainan. The antibiotic resistance profiles and antibiotic resistance genes of S. aureus show distinctive features in Hainan. The resistant rates of the MRSA isolates to a variety of antibiotics were significantly higher than those of the MSSA isolates. The predominant erythromycin and tetracycline resistance genes were ermC (90.1%, 100/111) and tetK (91.8%, 78/85), respectively. Eleven virulence genes, including the Panton-Valentine leukocidin (pvl) and eta, were determined, and the frequency of eta and pvl were found to be 57.3 and 47.6%. Such high prevalence has never been seen in mainland China before. Conclusion S. aureus isolates in Hainan have unique molecular characteristics, virulence gene and antibiotic resistance profiles, and main antibiotic resistance genes which may be associated with the special geographical location of Hainan and local trends in antibiotic use.


1999 ◽  
Vol 89 (11) ◽  
pp. 1066-1072 ◽  
Author(s):  
C. S. Kousik ◽  
D. F. Ritchie

Disease severity caused by races 1 through 6 of Xanthomonas campestris pv. vesicatoria on eight near-isogenic lines (isolines) of Early Calwonder (ECW) with three major resistance genes (Bs1, Bs2, and Bs3) in different combinations was evaluated in the greenhouse and field. Strains representing races 1, 3, 4, and 6 caused similar high levels of disease severity, followed by races 2 and 5 on susceptible ECW. Race 3 caused severe disease on all isolines lacking resistance gene Bs2. Race 4, which defeats Bs1 and Bs2, caused less disease on isoline ECW-12R (carries Bs1 + Bs2), than on isolines ECW, ECW-10R (carries Bs1), and ECW-20R (carries Bs2). Similar results were obtained with race 4 strains in field studies conducted during 1997 and 1998. In greenhouse studies, race 6, which defeats all three major genes, caused less disease on isoline ECW-13R (carries Bs1 + Bs3) and ECW-123R (carries Bs1 + Bs2 + Bs3) than on isolines ECW, ECW-10R, ECW-20R, and ECW-30R (carries Bs3), but not on ECW-23R (carries Bs2 + Bs3). In greenhouse studies with commercial hybrids, strains of races 4 and 6 caused less disease on Boynton Bell (carries Bs1 + Bs2) than on Camelot (carries no known resistance genes), King Arthur (carries Bs1), and X3R Camelot (carries Bs2). Race 6 caused less disease on hybrid R6015 (carries Bs1 + Bs2 + Bs3) and Sentinel (carries Bs1 + Bs3) than on Camelot. Residual effects were not as evident in field studies with race 6 strains. Defeated major resistance genes deployed in specific gene combinations (i.e., gene pyramids) were associated with less area under the disease progress curve than when genes were deployed individually in isolines of ECW or commercial hybrids. Successful management of bacterial spot of pepper is achieved incrementally by integrating multiple tactics. Although there is evidence of residual effects from defeated genes, these effects alone likely will not provide acceptable bacterial spot control in commercial production fields. However, when combined with sanitation practices and a judicious spray program, pyramids of defeated resistance genes may aid in reducing the risk of major losses due to bacterial spot.


2022 ◽  
Vol 10 (1) ◽  
pp. 126
Author(s):  
Antonio Lozano-León ◽  
Carlos García-Omil ◽  
Rafael R. Rodríguez-Souto ◽  
Alexandre Lamas ◽  
Alejandro Garrido-Maestu

Salmonella spp. and antimicrobial resistant microorganisms are two of the most important health issues worldwide. In the present study, strains naturally isolated from mussels harvested in Galicia (one of the main production areas in the world), were genetically characterized attending to the presence of virulence and antimicrobial resistance genes. Additionally, the antimicrobial profile was also determined phenotypically. Strains presenting several virulence genes were isolated but lacked all the antimicrobial resistance genes analyzed. The fact that some of these strains presented multidrug resistance, highlighted the possibility of bearing different genes than those analyzed, or resistance based on completely different mechanisms. The current study highlights the importance of constant surveillance in order to improve the safety of foods.


2018 ◽  
Author(s):  
Kelly L Wyres ◽  
Kathryn E Holt

Klebsiella pneumoniae is an opportunistic bacterial pathogen known for its high frequency and diversity of antimicrobial resistance (AMR) genes. In addition to being a significant clinical problem in its own right, K. pneumoniae is the species within which several new AMR genes were first discovered before spreading to other pathogens (e.g. carbapenem-resistance genes KPC, OXA-48 and NDM-1). Whilst K. pneumoniae’s contribution to the overall AMR crisis is impossible to quantify, current evidence suggests it has a wider ecological distribution, significantly more varied DNA composition, greater AMR gene diversity and a higher plasmid burden than other Gram negative opportunists. Hence we propose it plays a key role in disseminating AMR genes from environmental microbes to clinically important pathogens.


Sign in / Sign up

Export Citation Format

Share Document