scholarly journals Control of Soilborne Plant Pathogens by Incorporating Fresh Organic Amendments Followed by Tarping

2000 ◽  
Vol 90 (3) ◽  
pp. 253-259 ◽  
Author(s):  
Wim J. Blok ◽  
Jan G. Lamers ◽  
Aad J. Termorshuizen ◽  
Gerrit J. Bollen

A new method for the control of soilborne plant pathogens was tested for its efficacy in two field experiments during two years. Plots were amended with fresh broccoli or grass (3.4 to 4.0 kg fresh weight m-2) or left nonamended, and covered with an airtight plastic cover (0.135 mm thick) or left noncovered. In plots amended with broccoli or grass and covered with plastic sheeting, anaerobic and strongly reducing soil conditions developed quickly, as indicated by rapid depletion of oxygen and a decrease in redox potential values to as low as -200 mV. After 15 weeks, survival of Fusarium oxysporum f. sp. asparagi, Rhizoctonia solani, and Verticillium dahliae in inoculum samples buried 15 cm deep was strongly reduced in amended, covered plots in both experiments. The pathogens were not or hardly inactivated in amended, noncovered soil or nonamended, covered soil. The latter indicates that thermal inactivation due to increased soil temperatures under the plastic cover was not involved in pathogen inactivation. The results show the potential for this approach to control various soilborne pathogens and that it may serve as an alternative to chemical soil disinfestation for high-value crops under conditions where other alternatives, such as solarization or soil flooding, are not effective or not feasible.

2007 ◽  
Vol 37 (10) ◽  
pp. 1894-1906 ◽  
Author(s):  
C. Bulmer ◽  
K. Venner ◽  
C. Prescott

We evaluated soil conditions of rehabilitated log landings in the Interior Douglas-fir biogeoclimatic zone of British Columbia during the first 3 years after treatment and the growth of lodgepole pine ( Pinus contorta Dougl. ex Loud. var. latifolia Engelm.) on these log landings over 8 years. Rehabilitation treatments included combinations of tillage and the addition of either stockpiled topsoil or one of three organic amendments: hog fuel, sort-yard waste, and a wood waste – biosolids compost. The woody amendments were either applied as a surface mulch or incorporated into the soil after tillage. Tillage and addition of wood waste reduced soil bulk density and increased carbon content. Daytime soil temperatures in summer were lower under a hog fuel mulch than for the other treatments. The plots receiving hog fuel also had higher soil moisture content. One year after treatment, soil mechanical resistance for untreated soils, and those that were simply tilled, exceeded 2500 kPa for much of the growing season. Plots receiving wood waste had lower mechanical resistance. Use of wood waste in rehabilitation improved soil conditions and contributed to improved survival rates for planted lodgepole pine seedlings. Height growth after 8 years was not significantly affected by the treatments.


2021 ◽  
Vol 56 (3) ◽  
pp. 185-194
Author(s):  
S Akter ◽  
HR Khan

Organic amendments might be effective and sustainable in the amelioration of saline soil if proper management put in place. Accordingly, subsequent pot and field experiments were conducted in a saline soil to determine the effects of moisture levels and organic amendments on cation exchange capacity (CEC), ion dynamics under rice cultivation. The increment of CEC of the studied post harvest soils was significant, except for the moist condition under field experiment. There were significant variations in ion dynamics among the treatments under both the experiments at saturated soil conditions. Exchangeable Na+ contents decreased and K+ contents increased significantly with the increased rates of treatments. Exchangeable Ca2+ and Mg2+ contents of soil followed almost the similar trends as that exhibited by K+ but not significant. Among the anions, chloride decreased significantly under both the experiments while sulfate and bicarbonate contents increased by the applied treatments. This might be due to the inherent consequences of organic amendments on these soil properties. Bangladesh J. Sci. Ind. Res.56(3), 185-194, 2021


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1452
Author(s):  
Raluca-Maria Pârlici ◽  
Aurel Maxim ◽  
Stefania Mirela Mang ◽  
Ippolito Camele ◽  
Lucia Mihalescu ◽  
...  

Organic berry plantations have been gaining popularity among farmers during recent years. Even so, farmers experience serious challenges in disease control management, which is a concern in organic farming. Phragmidiumrubi-idaei (DC) P. Karst is the pathogen responsible for blackberry and raspberry rust disease, one of the most present and active diseases in plantations. The antifungal certified products found on the organic farming market offer the opportunity for an efficient control strategy over plant pathogens in fruit shrub plantations. In this study, 5 natural based products—namely Altosan, Mimox, Canelys, Zitron, and Zeolite—were tested for their fungistatic effect over P. rubi-idaei. The experiments were carried out under laboratory conditions, performing observations over the impact of organic products, used at different concentration levels, on rust conidia germination. Moreover, field experiments were conducted in order to evaluate the efficiency of different treatments for rust control on raspberry (‘Polka’, ‘Veten’ and ‘Heritage’) and blackberry (‘Thorn Free’, ‘Chester’ and ‘Loch Ness’) varieties. Data analysis based on ANOVA tests showed significant differences between the tested variants and the control sample at p < 0.001. Furthermore, LSD test confirmed differences between all substances tested (p < 0.005). The natural products Canelys (formulated with cinnamon) and Zytron (based on citrus extract) have proven the highest inhibitory capacity for conidia germination during in vitro tests registering values of 80.42% and 78.34%, respectively. The same high inhibitory rates against rust pathogen were kept also in the field tests using the same two natural-based products mentioned earlier. In addition, outcomes from this study demonstrated that Zeolite is not recommended for raspberry or blackberry rust control.


Atmosphere ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 441
Author(s):  
Philipp Grabenweger ◽  
Branislava Lalic ◽  
Miroslav Trnka ◽  
Jan Balek ◽  
Erwin Murer ◽  
...  

A one-dimensional simulation model that simulates daily mean soil temperature on a daily time-step basis, named AGRISOTES (AGRIcultural SOil TEmperature Simulation), is described. It considers ground coverage by biomass or a snow layer and accounts for the freeze/thaw effect of soil water. The model is designed for use on agricultural land with limited (and mostly easily available) input data, for estimating soil temperature spatial patterns, for single sites (as a stand-alone version), or in context with agrometeorological and agronomic models. The calibration and validation of the model are carried out on measured soil temperatures in experimental fields and other measurement sites with various climates, agricultural land uses and soil conditions in Europe. The model validation shows good results, but they are determined strongly by the quality and representativeness of the measured or estimated input parameters to which the model is most sensitive, particularly soil cover dynamics (biomass and snow cover), soil pore volume, soil texture and water content over the soil column.


2021 ◽  
Vol 13 (7) ◽  
pp. 3617
Author(s):  
Agnieszka Medyńska-Juraszek ◽  
Agnieszka Latawiec ◽  
Jolanta Królczyk ◽  
Adam Bogacz ◽  
Dorota Kawałko ◽  
...  

Biochar application is reported as a method for improving physical and chemical soil properties, with a still questionable impact on the crop yields and quality. Plant productivity can be affected by biochar properties and soil conditions. High efficiency of biochar application was reported many times for plant cultivation in tropical and arid climates; however, the knowledge of how the biochar affects soils in temperate climate zones exhibiting different properties is still limited. Therefore, a three-year-long field experiment was conducted on a loamy Haplic Luvisol, a common arable soil in Central Europe, to extend the laboratory-scale experiments on biochar effectiveness. A low-temperature pinewood biochar was applied at the rate of 50 t h−1, and maize was selected as a tested crop. Biochar application did not significantly impact the chemical soil properties and fertility of tested soil. However, biochar improved soil physical properties and water retention, reducing plant water stress during hot dry summers, and thus resulting in better maize growth and higher yields. Limited influence of the low-temperature biochar on soil properties suggests the crucial importance of biochar-production technology and biochar properties on the effectiveness and validity of its application in agriculture.


Water ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1640 ◽  
Author(s):  
Li-Li Zhao ◽  
Lu-Sheng Li ◽  
Huan-Jie Cai ◽  
Xiao-Hu Shi ◽  
Chao Zhang

Organic amendments improve general soil conditions and stabilize crop production, but their effects on the soil hydrothermal regime, root distribution, and their contributions to water productivity (WP) of maize have not been fully studied. A two-year field experiment was conducted to investigate the impacts of organic amendments on soil temperature, water storage depletion (SWSD), root distribution, grain yield, and the WP of summer maize (Zea mays L.) in the Guanzhong Plain of Northwest China. The control treatment (CO) applied mineral fertilizer without amendments, and the three amended treatments applied mineral fertilizer with 20 Mg ha−1 of wheat straw (MWS), farmyard manure (MFM), and bioorganic fertilizer (MBF), respectively. Organic amendments decreased SWSD compared to CO, and the lowest value was obtained in MBF, followed by MWS and MFM. Meanwhile, the lowest mean topsoil (0–10 cm) temperature was registered in MWS. Compared to CO, organic amendments generally improved the root length density (RLD) and root weight density (RWD) of maize. MBF showed the highest RLD across the whole soil profile, while MWS yielded the greatest RWD to 20 cm soil depth. Consequently, organic amendments increased grain yield by 9.9–40.3% and WP by 8.6–47.1% compared to CO, and the best performance was attained in MWS and MBF. We suggest that MWS and MBF can benefit the maize agriculture in semi-arid regions for higher yield, and WP through regulating soil hydrothermal conditions and improving root growth.


1951 ◽  
Vol 4 (3) ◽  
pp. 211
Author(s):  
GC Wade

The disease known as white root rot affects raspberries, and to a less extent loganberries, in Victoria. The causal organism is a white, sterile fungus that has not been identified. The disease is favoured by dry soil conditions and high soil temperatures. It spreads externally to the host by means of undifferentiated rhizomorphs; and requires a food base for the establishment of infection. The spread of rhizomorphs through the soil is hindered by high soil moisture content and consequent poor aeration of the soil.


1951 ◽  
Vol 41 (1-2) ◽  
pp. 149-162 ◽  
Author(s):  
H. H. Nicholson ◽  
G. Alderman ◽  
D. H. Firth

1. The methods of investigation of the effect of ground water-level on crop growth, together with tho field installations in use, are discussed.2. Direct field experiments are handicapped by the difficulties of achieving close control on a sufficiently large scale, due to considerable variations of surface level and depth of peat within individual fields and to rapid fluctuations in rainfall and evaporation. Many recorded experiments are associated with climatic conditions of substantial precipitation during the growing season.3. Seasonal fluctuations of ground water-level in Fen peat soils in England, in natural and agricultural conditions, are described.4. The local soil conditions are outlined and the implications of profile variations are discussed.5. The effective control of ground water-level on a field scale requires deep and commodious ditches and frequent large underdrains to ensure the movement of water underground with sufficient freedom to give rapid compensatory adjustment for marked disturbances of ground water-level following the incidence of heavy rain or excessive evaporation.6. A working installation for a field experiment in ordinary farming conditions is described and the measure of control attained is indicated.


Sign in / Sign up

Export Citation Format

Share Document