An Overview of Current Knowledge of the Gut Microbiota and Low-Calorie Sweeteners

2021 ◽  
Vol 56 (3) ◽  
pp. E4-E5
2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Riley L. Hughes ◽  
Cindy D. Davis ◽  
Alexandra Lobach ◽  
Hannah D. Holscher

Nutrients ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 2428
Author(s):  
Małgorzata Guz ◽  
Witold Jeleniewicz ◽  
Anna Malm ◽  
Izabela Korona-Glowniak

A still growing interest between human nutrition in relation to health and disease states can be observed. Dietary components shape the composition of microbiota colonizing our gastrointestinal tract which play a vital role in maintaining human health. There is a strong evidence that diet, gut microbiota and their metabolites significantly influence our epigenome, particularly through the modulation of microRNAs. These group of small non-coding RNAs maintain cellular homeostasis, however any changes leading to impaired expression of miRNAs contribute to the development of different pathologies, including neoplastic diseases. Imbalance of intestinal microbiota due to diet is primary associated with the development of colorectal cancer as well as other types of cancers. In the present work we summarize current knowledge with particular emphasis on diet-microbiota-miRNAs axis and its relation to the development of colorectal cancer.


Author(s):  
A. L. Cunningham ◽  
J. W. Stephens ◽  
D. A. Harris

AbstractObesity and type 2 diabetes mellitus (T2DM) are common, chronic metabolic disorders with associated significant long-term health problems at global epidemic levels. It is recognised that gut microbiota play a central role in maintaining host homeostasis and through technological advances in both animal and human models it is becoming clear that gut microbiota are heavily involved in key pathophysiological roles in the aetiology and progression of both conditions. This review will focus on current knowledge regarding microbiota interactions with short chain fatty acids, the host inflammatory response, signaling pathways, integrity of the intestinal barrier, the interaction of the gut-brain axis and the subsequent impact on the metabolic health of the host.


2017 ◽  
Vol 64 (3) ◽  
pp. 185-193
Author(s):  
Anca Magdalena Munteanu ◽  
◽  
Raluca Cursaru ◽  
Loreta Guja ◽  
Simona Carniciu ◽  
...  

The medical research of the last 1-2 decades allows us to look at the human gut microbiota and microbiome as to a structure that can promote health and sometimes initiate disease. It works like an endocrine organ: releasing specific metabolites, using environmental inputs, e.g. diet, or acting through its structural compounds, that signal human host receptors, to finally contributing to the pathogenesis of several gastrointestinal and non-gastrointestinal diseases. The same commensal microbes were found as shapers of the human host response to drugs (cardiovascular, oncology etc.). New technologies played an important role in these achievements, facilitating analysis of the genetic and metabolic profile of this microbial community. Once the inputs, the pathways and a lot of human host receptors were highlighted, the scientists were encouraged to go further into research, in order to develop new pathogenic therapies, targeting the human gut flora. Dual therapies, evolving these “friend microbes”, are another actual research subjects. This review gives an update on the current knowledge in the area of microbiota disbalances under environmental factors, the contribution of gut microbiota and microbiome to the pathogenesis of obesity, obesity associated metabolic disorders and cardiovascular disease, as well as new perspectives in preventing and treating these diseases, with high prevalence in contemporary, economically developed societies. It brings the latest and most relevant evidences relating to: probiotics, prebiotics, polyphenols and fecal microbiota transplantation, dietary nutrient manipulation, microbial as well as human host enzyme manipulation, shaping human responses to currently used drugs, manipulating the gut microbiome by horizontal gene transfer.


2021 ◽  
Vol 75 ◽  
pp. 283-291
Author(s):  
Agata Janczy ◽  
Magdalena Landowska ◽  
Zdzisław Kochan

Anorexia nervosa (AN) is described as an eating disorder, which is characterized by malnutrition, a fear of gaining body mass, and a disturbed self-body image. This disease is dependent on biological, psychological and socio-cultural factors. Among the various biological factors, the importance of intestinal microbiota has recently attracted much attention. Identification of the gut microbiota dysbiosis in patients with AN has opened new and promising research directions. Recent observations focus in particular on the association between intestinal microorganisms and the occurrence of functional gastrointestinal disorders associated with anorexia, anxiety and depression, as well as the regulation of eating habits. The composition of the gut microbiota differs between patients with AN and individuals with normal body mass. This is due to the incorrect diet of patients; on the other hand, there is growing interest in the role of intestinal microbiota in the pathogenesis of AN, its changes through re-nutrition practices, and in particular the modulation of intestinal microbiological composition by means of nutritional interventions or the use of preand probiotics as standard supplements therapy of eating disorders. There is a need for further research about the microbiome - intestine - brain axis. Furthermore, consequences of changes in dietary habits as part of AN treatment are also unknown. However, better knowledge about the relationship between the gut microbiome and the brain can help improve the treatment of this disorder. This review aims to present the current knowledge about the potential role of intestinal microbiota in the pathogenesis, course and treatment of AN.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Maike Willers ◽  
Dorothee Viemann

Abstract Colonization of the intestine with commensal bacteria is known to play a major role in the maintenance of human health. An altered gut microbiome is associated with various ensuing diseases including respiratory diseases. Here, we summarize current knowledge on the impact of the gut microbiota on airway immunity with a focus on consequences for the host defense against respiratory infections. Specific gut commensal microbiota compositions and functions are depicted that mediate protection against respiratory infections with bacterial and viral pathogens. Lastly, we highlight factors that have imprinting effects on the establishment of the gut microbiota early in life and are potentially relevant in the context of respiratory infections. Deepening our understanding of these relationships will allow to exploit the knowledge on how gut microbiome maturation needs to be modulated to ensure lifelong enhanced resistance towards respiratory infections.


Hypertension ◽  
2020 ◽  
Vol 76 (Suppl_1) ◽  
Author(s):  
Guannan Zhou ◽  
Tao Yang ◽  
Sivarajan Kumarasamy ◽  
Bina Joe ◽  
Lauren G Koch

Introduction: Low exercise capacity is a strong predictor of cardiovascular disease and overall mortality. Previously we have shown that rats artificially selected for low intrinsic exercise capacity (LCR) have reduced longevity and develop features consistent with metabolic syndrome (MetS) compared to high intrinsic exercise capacity rats (HCR). Current knowledge suggests that gut microbiota is an important contributor for host fitness. Thus, we hypothesized that transferring gut microbiota from LCR rats into inbred high capacity runner (HCR /Tol ) rats would increase risk factors for MetS, including high blood pressure (BP), gain in body weight (BW), and altered resting energy metabolism. Methods: Gut microbiota was depleted in male HCR/ Tol rats (4 mo.) by an antibiotic cocktail given orally (50mg/kg of BW/day) for 5 days, followed by weekly fecal microbiota transfer (FMT) from male LCR or HCR rats (13 mo.) to generate HCR/ Tol -LCR FMT (n = 5) or HCR/ Tol -HCR FMT (n = 6) groups. BW was measured every 4 weeks. At week 11, whole body metabolism was measured by indirect calorimetry (Oxymax, Columbus Instruments). Respiratory Exchange Ratio (RER), Energy Expenditure (EE), glucose and fat oxidation were calculated from oxygen consumption and carbon dioxide release (VO 2 and VCO 2 ). At week 12, BP was measured by tail-cuff method (Kent Scientific) and treadmill exercise test was done at week 13. Results: Compared to HCR/ Tol -HCR FMT , HCR/ Tol -LCR FMT showed a significant gain in BW (7.2% vs 1.9%, P<0.05), elevated systolic BP (147 vs 120 mmHg, P<0.0001), diastolic BP (112 vs 91 mmHg, P<0.01), and mean BP (123 vs 100 mmHg, P<0.001). BP changes in HCR/ Tol -LCR FMT associated with 1) increased VO 2 (355 vs 320 ml/hr, P<0.05), 2) elevated VCO 2 (350 vs 298 ml/hr, P<0.01), 3) increased EE (1.8 vs 1.6 kcal/hr, P<0.01), 4) higher RER (0.96 vs 0.91, P<0.001), 5) higher glucose oxidation (1.36 vs 1.12 g/kg/hr, P<0.001) and 6) reduced fatty acid oxidation (0.09 vs 0.15 g/kg/hr, P<0.01) and a 23% lower exercise capacity. Conclusions: Gut microbiota from LCR rats strongly associated with poor health outcomes, notably elevated BP and impaired energy metabolism. These findings suggest that altered energy homeostasis by microbiota is mechanistically linked to host BP regulation within MetS.


Nutrients ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 3082
Author(s):  
M. Victoria Moreno-Arribas ◽  
Begoña Bartolomé ◽  
José L. Peñalvo ◽  
Patricia Pérez-Matute ◽  
Maria José Motilva

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder leading to the most common form of dementia in elderly people. Modifiable dietary and lifestyle factors could either accelerate or ameliorate the aging process and the risk of developing AD and other age-related morbidities. Emerging evidence also reports a potential link between oral and gut microbiota alterations and AD. Dietary polyphenols, in particular wine polyphenols, are a major diver of oral and gut microbiota composition and function. Consequently, wine polyphenols health effects, mediated as a function of the individual’s oral and gut microbiome are considered one of the recent greatest challenges in the field of neurodegenerative diseases as a promising strategy to prevent or slow down AD progression. This review highlights current knowledge on the link of oral and intestinal microbiome and the interaction between wine polyphenols and microbiota in the context of AD. Furthermore, the extent to which mechanisms bacteria and polyphenols and its microbial metabolites exert their action on communication pathways between the brain and the microbiota, as well as the impact of the molecular mediators to these interactions on AD patients, are described.


2020 ◽  
Vol 8 (8) ◽  
pp. 1119 ◽  
Author(s):  
Naser A. Alsharairi

Research has amply demonstrated that early life dysbiosis of the gut microbiota influences the propensity to develop asthma. The influence of maternal nutrition on infant gut microbiota is therefore of growing interest. However, a handful of prospective studies have examined the role of maternal dietary patterns during pregnancy in influencing the infant gut microbiota but did not assess whether this resulted in an increased risk of asthma later in life. The mechanisms involved in the process are also, thus far, poorly documented. There have also been few studies examining the effect of maternal dietary nutrient intake during lactation on the milk microbiota, the effect on the infant gut microbiota and, furthermore, the consequences for asthma development remain largely unknown. Therefore, the specific aim of this mini review is summarizing the current knowledge regarding the effect of maternal nutrition during pregnancy and lactation on the infant gut microbiota composition, and whether it has implications for asthma development.


Sign in / Sign up

Export Citation Format

Share Document