scholarly journals Morphological and functional changes in the vertebral column with increasing aquatic adaptation in crocodylomorphs

2015 ◽  
Vol 2 (11) ◽  
pp. 150439 ◽  
Author(s):  
Julia L. Molnar ◽  
Stephanie E. Pierce ◽  
Bhart-Anjan S. Bhullar ◽  
Alan H. Turner ◽  
John R. Hutchinson

The lineage leading to modern Crocodylia has undergone dramatic evolutionary changes in morphology, ecology and locomotion over the past 200+ Myr. These functional innovations may be explained in part by morphological changes in the axial skeleton, which is an integral part of the vertebrate locomotor system. Our objective was to estimate changes in osteological range of motion (RoM) and intervertebral joint stiffness of thoracic and lumbar vertebrae with increasing aquatic adaptation in crocodylomorphs. Using three-dimensional virtual models and morphometrics, we compared the modern crocodile Crocodylus to five extinct crocodylomorphs: Terrestrisuchus , Protosuchus , Pelagosaurus , Steneosaurus and Metriorhynchus , which span the spectrum from terrestrial to fully aquatic. In Crocodylus , we also experimentally measured changes in trunk flexibility with sequential removal of osteoderms and soft tissues. Our results for the more aquatic species matched our predictions fairly well, but those for the more terrestrial early crocodylomorphs did not. A likely explanation for this lack of correspondence is the influence of other axial structures, particularly the rigid series of dorsal osteoderms in early crocodylomorphs. The most important structures for determining RoM and stiffness of the trunk in Crocodylus were different in dorsoventral versus mediolateral bending, suggesting that changes in osteoderm and rib morphology over crocodylomorph evolution would have affected movements in some directions more than others.

Author(s):  
Martin E. Atkinson

The locomotor system comprises the skeleton, composed principally of bone and cartilage, the joints between them, and the muscles which move bones at joints. The skeleton forms a supporting framework for the body and provides the levers to which the muscles are attached to produce movement of parts of the body in relation to each other or movement of the body as a whole in relation to its environment. The skeleton also plays a crucial role in the protection of internal organs. The skeleton is shown in outline in Figure 2.1A. The skull, vertebral column, and ribs together constitute the axial skeleton. This forms, as its name implies, the axis of the body. The skull houses and protects the brain and the eyes and ears; the anatomy of the skull is absolutely fundamental to the understanding of the structure of the head and is covered in detail in Section 4. The vertebral column surrounds and protects the spinal cord which is enclosed in the spinal canal formed by a large central canal in each vertebra. The vertebral column is formed from 33 individual bones although some of these become fused together. The vertebral column and its component bones are shown from the side in Figure 2.1B. There are seven cervical vertebrae in the neck, twelve thoracic vertebrae in the posterior wall of the thorax, five lumbar vertebrae in the small of the back, five fused sacral vertebrae in the pelvis, and four coccygeal vertebrae—the vestigial remnants of a tail. Intervertebral discs separate individual vertebrae from each other and act as a cushion between the adjacent bones; the discs are absent from the fused sacral vertebrae. The cervical vertebrae are small and very mobile, allowing an extensive range of neck movements and hence changes in head position. The first two cervical vertebrae, the atlas and axis, have unusual shapes and specialized joints that allow nodding and shaking movements of the head on the neck. The thoracic vertebrae are relatively immobile. combination of thoracic vertebral column, ribs, and sternum form the thoracic cage that protects the thoracic organs, the heart, and lungs and is intimately involved in ventilation (breathing).


2008 ◽  
Vol 130 (5) ◽  
Author(s):  
John Z. Wu ◽  
Kristine Krajnak ◽  
Daniel E. Welcome ◽  
Ren G. Dong

Although excessive dynamic deformation of the soft tissues in the fingertip under vibration loading is thought to induce hand-arm vibration syndrome, the in vivo distributions of the dynamic stress/strain of the tissues in the fingertip under vibration conditions have not been studied because they cannot be measured experimentally. In the present study, we analyzed the dynamic responses of a fingertip to vibrations by extending our previously proposed three-dimensional finite element (FE) model. The FE model of the fingertip contains the essential anatomical structures of a finger, such as skin layers (dermis and epidermis), subcutaneous tissue, bone, and nail. Our analysis indicated that the fingertip has a major local resonance around 100Hz and that the vibration displacement in the soft tissues under the nail bed is less than 10% of those in the finger pad for all precompression levels and vibration range. The resonant frequency of the fingertip was found to increase from 88Hzto125Hz with the static precompression increasing from 0.5mmto2.0mm. These results suggest that structural and functional changes in vascular function will likely initiate from the fingerpad, the location that undergoes the greatest deformation during vibration exposure. The current predictions are qualitatively consistent with the physiological data collected from workers with vibration white finger.


Author(s):  
P. Bagavandoss ◽  
JoAnne S. Richards ◽  
A. Rees Midgley

During follicular development in the mammalian ovary, several functional changes occur in the granulosa cells in response to steroid hormones and gonadotropins (1,2). In particular, marked changes in the content of membrane-associated receptors for the gonadotropins have been observed (1).We report here scanning electron microscope observations of morphological changes that occur on the granulosa cell surface in response to the administration of estradiol, human follicle stimulating hormone (hFSH), and human chorionic gonadotropin (hCG).Immature female rats that were hypophysectcmized on day 24 of age were treated in the following manner. Group 1: control groups were injected once a day with 0.1 ml phosphate buffered saline (PBS) for 3 days; group 2: estradiol (1.5 mg/0.2 ml propylene glycol) once a day for 3 days; group 3: estradiol for 3 days followed by 2 days of hFSH (1 μg/0.1 ml) twice daily, group 4: same as in group 3; group 5: same as in group 3 with a final injection of hCG (5 IU/0.1 ml) on the fifth day.


2018 ◽  
Vol 1 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Kamaljit Singh Boparai ◽  
Rupinder Singh

This study highlights the thermal characterization of ABS-Graphene blended three dimensional (3D) printed functional prototypes by fused deposition modeling (FDM) process. These functional prototypes have some applications as electro-chemical energy storage devices (EESD). Initially, the suitability of ABS-Graphene composite material for FDM applications has been examined by melt flow index (MFI) test. After establishing MFI, the feedstock filament for FDM has been prepared by an extrusion process. The fabricated filament has been used for printing 3D functional prototypes for printing of in-house EESD. The differential scanning calorimeter (DSC) analysis was conducted to understand the effect on glass transition temperature with the inclusion of Graphene (Gr) particles. It has been observed that the reinforced Gr particles act as a thermal reservoir (sink) and enhances its thermal/electrical conductivity. Also, FT-IR spectra realized the structural changes with the inclusion of Gr in ABS matrix. The results are supported by scanning electron microscopy (SEM) based micrographs for understanding the morphological changes.


2020 ◽  
Vol 62 (1) ◽  
pp. 55-59
Author(s):  
Krzysztof Mataczyński ◽  
Mateusz Pelc ◽  
Halina Romualda Zięba ◽  
Zuzana Hudakova

Acquired adult flatfoot is a three-dimensional deformation, which consists of hindfoot valgus, collapse of the longitudinal arch of the foot and adduction of the forefoot. The aim of the work is to present problems related to etiology, biomechanics, clinical diagnostics and treatment principles of acquired flatfoot. The most common cause in adults is the dysfunction of the tibialis posterior muscle, leading to the lack of blocking of the transverse tarsal joint during heel elevation. Loading the unblocked joints consequently leads to ligament failure. The clinical image is dominated by pain in the foot and tibiotarsal joint. The physical examination of the flat feet consists of: inspection, palpation, motion range assessment and dynamic force assessment. The comparable attention should be paid to the height of the foot arch, the occurrence of “too many toes” sign, evaluate the heel- rise test and correction of the flatfoot, exclude Achilles tendon contracture. The diagnosis also uses imaging tests. In elastic deformations with symptoms of posterior tibial tendonitis, non-steroidal anti-inflammatory drugs, short-term immobilization, orthotics stabilizing the medial arch of the foot are used. In rehabilitation, active exercises of the shin muscles and the feet, especially the eccentric exercises of the posterior tibial muscle, are intentional. The physiotherapy and balneotherapy treatments, in particular hydrotherapy, electrotherapy and laser therapy, are used as a support. In advanced lesions, surgical treatment may be necessary, including plastic surgery of soft tissues, tendons, as well as osteotomy procedures.


2020 ◽  
Vol 27 (29) ◽  
pp. 4778-4788 ◽  
Author(s):  
Victoria Heredia-Soto ◽  
Andrés Redondo ◽  
José Juan Pozo Kreilinger ◽  
Virginia Martínez-Marín ◽  
Alberto Berjón ◽  
...  

Sarcomas are tumours of mesenchymal origin, which can arise in bone or soft tissues. They are rare but frequently quite aggressive and with a poor outcome. New approaches are needed to characterise these tumours and their resistance mechanisms to current therapies, responsible for tumour recurrence and treatment failure. This review is focused on the potential of three-dimensional (3D) in vitro models, including multicellular tumour spheroids (MCTS) and organoids, and the latest data about their utility for the study on important properties for tumour development. The use of spheroids as a particularly valuable alternative for compound high throughput screening (HTS) in different areas of cancer biology is also discussed, which enables the identification of new therapeutic opportunities in commonly resistant tumours.


Author(s):  
Jonas F. Eichinger ◽  
Maximilian J. Grill ◽  
Iman Davoodi Kermani ◽  
Roland C. Aydin ◽  
Wolfgang A. Wall ◽  
...  

AbstractLiving soft tissues appear to promote the development and maintenance of a preferred mechanical state within a defined tolerance around a so-called set point. This phenomenon is often referred to as mechanical homeostasis. In contradiction to the prominent role of mechanical homeostasis in various (patho)physiological processes, its underlying micromechanical mechanisms acting on the level of individual cells and fibers remain poorly understood, especially how these mechanisms on the microscale lead to what we macroscopically call mechanical homeostasis. Here, we present a novel computational framework based on the finite element method that is constructed bottom up, that is, it models key mechanobiological mechanisms such as actin cytoskeleton contraction and molecular clutch behavior of individual cells interacting with a reconstructed three-dimensional extracellular fiber matrix. The framework reproduces many experimental observations regarding mechanical homeostasis on short time scales (hours), in which the deposition and degradation of extracellular matrix can largely be neglected. This model can serve as a systematic tool for future in silico studies of the origin of the numerous still unexplained experimental observations about mechanical homeostasis.


Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1126
Author(s):  
Giovanna Iezzi ◽  
Francesca Di Lillo ◽  
Michele Furlani ◽  
Marco Degidi ◽  
Adriano Piattelli ◽  
...  

Symmetric and well-organized connective tissues around the longitudinal implant axis were hypothesized to decrease early bone resorption by reducing inflammatory cell infiltration. Previous studies that referred to the connective tissue around implant and abutments were based on two-dimensional investigations; however, only advanced three-dimensional characterizations could evidence the organization of connective tissue microarchitecture in the attempt of finding new strategies to reduce inflammatory cell infiltration. We retrieved three implants with a cone morse implant–abutment connection from patients; they were investigated by high-resolution X-ray phase-contrast microtomography, cross-linking the obtained information with histologic results. We observed transverse and longitudinal orientated collagen bundles intertwining with each other. In the longitudinal planes, it was observed that the closer the fiber bundles were to the implant, the more symmetric and regular their course was. The transverse bundles of collagen fibers were observed as semicircular, intersecting in the lamina propria of the mucosa and ending in the oral epithelium. No collagen fibers were found radial to the implant surface. This intertwining three-dimensional pattern seems to favor the stabilization of the soft tissues around the implants, preventing inflammatory cell apical migration and, consequently, preventing bone resorption and implant failure. This fact, according to the authors’ best knowledge, has never been reported in the literature and might be due to the physical forces acting on fibroblasts and on the collagen produced by the fibroblasts themselves, in areas close to the implant and to the symmetric geometry of the implant itself.


2020 ◽  
Vol 54 (4) ◽  
pp. 289-296
Author(s):  
Adeeba Ali ◽  
Anil K. Chandna ◽  
Anshul Munjal

Background: Concerns about the accuracy and reliability of soft tissue landmarks using two-dimensional (2D) and three-dimensional (3D) imaging. Objective: The aim of the systematic review is to estimate accuracy and reliability of soft tissue landmarks with 2D imaging and 3D imaging for orthodontic diagnosis planning and treatment planning purposes. Data Sources: Electronic database search was performed in MEDLINE via PubMed, Embase via embase.com, and the Cochrane library website. Selection Criteria: The data were extracted according to two protocols based on Centre for Evidence-Based Medicine (CEBM) critical appraisal tools. Next, levels of evidence were categorized into three groups: low, medium, and high. Data Synthesis: Fifty-five publications were found through database search strategies. A total of nine publications were included in this review. Conclusion According to the available literature, 3D imaging modalities were more accurate and reliable as compared to 2D modalities. Cone beam computed tomography (CBCT) was considered the most reliable imaging tool for soft tissues.


Sign in / Sign up

Export Citation Format

Share Document