scholarly journals Climate change affected the spatio-temporal occurrence of disasters in China over the past five centuries

2021 ◽  
Vol 8 (2) ◽  
pp. 200731
Author(s):  
Chuan Yan ◽  
Huidong Tian ◽  
Xinru Wan ◽  
Jinxing He ◽  
Guoyu Ren ◽  
...  

Climate change may contribute to the spatio-temporal occurrence of disasters. Long-term studies of either homogeneous or heterogeneous responses of historical disasters to climate change are, however, limited by the quality and quantity of the available proxy data. Here we reconstruct spatio-temporal patterns of five types of disasters in China during the period AD 1368–1911. Our analyses of these time series reveal that warmer temperatures decreased the occurrence of disasters in the monsoon-affected parts of central-east China, but it increased the frequency and intensity of disasters along the boundary of arid and humid conditions in parts of southwest and northeast China, probably driven by the interplay among monsoon, westerlies, polar vortex and variation of temperature. Moreover, we show that drought and flood events had cascading effects on the occurrences of locust outbreaks, famine and human epidemics. Our findings suggest that climate can contribute to the spatio-temporal occurrence of disasters, and therefore may contribute to an improvement of China's regional to national risk management of future climate and environmental change.


2021 ◽  
Author(s):  
Nima Shokri ◽  
Amirhossein Hassani ◽  
Adisa Azapagic

<p>Population growth and climate change is projected to increase the pressure on land and water resources, especially in arid and semi-arid regions. This pressure is expected to affect all driving mechanisms of soil salinization comprising alteration in soil hydrological balance, sea salt intrusion, wet/dry deposition of wind-born saline aerosols — leading to an increase in soil salinity. Soil salinity influences soil stability, bio-diversity, ecosystem functioning and soil water evaporation (1). It can be a long-term threat to agricultural activities and food security. To devise sustainable action plan investments and policy interventions, it is crucial to know when and where salt-affected soils occur. However, current estimates on spatio-temporal variability of salt-affected soils are majorly localized and future projections in response to climate change are rare. Using Machine Learning (ML) algorithms, we related the available measured soil salinity values (represented by electrical conductivity of the saturated paste soil extract, EC<sub>e</sub>) to some environmental information (or predictors including outputs of Global Circulation Models, soil, crop, topographic, climatic, vegetative, and landscape properties of the sampling locations) to develop a set of data-driven predictive tools to enable the spatio-temporal predictions of soil salinity. The outputs of these tools helped us to estimate the extent and severity of the soil salinity under current and future climatic patterns at different geographical levels and identify the salinization hotspots by the end of the 21<sup>st</sup> century in response to climate change. Our analysis suggests that a soil area of 11.73 Mkm<sup>2</sup> located in non-frigid zones has been salt-affected in at least three-fourths of the 1980 - 2018 period (2). At the country level, Brazil, Peru, Sudan, Colombia, and Namibia were estimated to have the highest rates of annual increase in the total area of soils with an EC<sub>e</sub> ≥ 4 dS m<sup>-1</sup>. Additionally, the results indicate that by the end of the 21<sup>st</sup> century, drylands of South America, southern and Western Australia, Mexico, southwest United States, and South Africa will be the salinization hotspots (compared to the 1961 - 1990 period). The results of this study could inform decision-making and contribute to attaining the United Nation’s Sustainable Development Goals for land and water resources management.</p><p>1. Shokri-Kuehni, S.M.S., Raaijmakers, B., Kurz, T., Or, D., Helmig, R., Shokri, N. (2020). Water Table Depth and Soil Salinization: From Pore-Scale Processes to Field-Scale Responses. Water Resour. Res., 56, e2019WR026707. https://doi.org/ 10.1029/2019WR026707</p><p>2. Hassani, A., Azapagic, A., Shokri, N. (2020). Predicting Long-term Dynamics of Soil Salinity and Sodicity on a Global Scale, Proc. Nat. Acad. Sci., 117, 52, 33017–33027. https://doi.org/10.1073/pnas.2013771117</p>



2019 ◽  
Vol 116 (23) ◽  
pp. 11093-11098 ◽  
Author(s):  
Matthias C. Rillig ◽  
Janis Antonovics

Awareness that our planet is a self-supporting biosphere with sunlight as its major source of energy for life has resulted in a long-term historical fascination with the workings of self-supporting ecological systems. However, the studies of such systems have never entered the canon of ecological or evolutionary tools and instead, have led a fringe existence connected to life support system engineering and space travel. We here introduce a framework for a renaissance in biospherics based on the study of matter-closed, energy-open ecosystems at a microbial level (microbial biospherics). Recent progress in genomics, robotics, and sensor technology makes the study of closed systems now much more tractable than in the past, and we argue that the time has come to emancipate the study of closed systems from this fringe context and bring them into a mainstream approach for studying ecosystem processes. By permitting highly replicated long-term studies, especially on predetermined and simplified systems, microbial biospheres offer the opportunity to test and develop strong hypotheses about ecosystem function and the ecological and evolutionary determinants of long-term system failure or persistence. Unlike many sciences, ecosystem ecology has never fully embraced a reductionist approach and has remained focused on the natural world in all its complexity. We argue that a reductionist approach to ecosystem ecology, using microbial biospheres, based on a combination of theory and the replicated study of much simpler self-enclosed microsystems could pay huge dividends.



2016 ◽  
Vol 2016 ◽  
pp. 1-13
Author(s):  
Baodeng Hou ◽  
Yongxiang Wu ◽  
Jianhua Wang ◽  
Kai Wu ◽  
Weihua Xiao

The frequent occurrence of geophysical disasters under climate change has drawn Chinese scholars to pay their attention to disaster relations. If the occurrence sequence of disasters could be identified, long-term disaster forecast could be realized. Based on the Earth Degassing Effect (EDE) which is valid, this paper took the magnitude, epicenter, and occurrence time of the earthquake, as well as the epicenter and occurrence time of the rainstorm floods as basic factors to establish an integrated model to study the correlation between rainstorm floods and earthquakes. 2461 severe earthquakes occurred in China or within 3000 km from China and the 169 heavy rainstorm floods occurred in China over the past 200+ years as the input data of the model. The computational results showed that although most of the rainstorm floods have nothing to do with the severe earthquakes from a statistical perspective, some floods might relate to earthquakes. This is especially true when the earthquakes happen in the vapor transmission zone where rainstorms lead to abundant water vapors. In this regard, earthquakes are more likely to cause big rainstorm floods. However, many cases of rainstorm floods could be found after severe earthquakes with a large extent of uncertainty.



1999 ◽  
Vol 26 (3) ◽  
pp. 166-168 ◽  
Author(s):  
TIM NEWCOMB

Many nations have recognized the need to reduce the emissions of greenhouse gases (GHGs). The scientific assessments of climate change of the Intergovernmental Panel on Climate Change (IPCC) support the need to reduce GHG emissions. The 1997 Kyoto Protocol to the 1992 Convention on Climate Change (UNTS 30822) has now been signed by more than 65 countries, although that Protocol has not yet entered into force. Some 14 of the industrialized countries listed in the Protocol face reductions in carbon dioxide emissions of more than 10% compared to projected 1997 carbon dioxide emissions (Najam & Page 1998).



2010 ◽  
Vol 6 (4) ◽  
pp. 475-481 ◽  
Author(s):  
M.-Q. Li ◽  
Q.-S. Ge ◽  
Z.-X. Hao ◽  
J.-Y. Zheng ◽  
S.-F. He

Abstract. Using six long-term temperature proxy data series derived from different natural evidences, including pollens and lake-sediments, we reconstructed a temperature series with a 100-yr time resolution for the past 5000 yr in the Hetao region and its surrounding areas. The resulting series suggests that, on a millennial timescale, temperatures in the region were higher than the mean value of the whole series during the 5000~2600 years before present (yr BP) period, and became relatively low comparing with the average temperature of the whole series after 2600 yr BP. Within these two periods, temperature fluctuations comprising numerous short, multi-centennial intervals also existed. A comparison between our reconstructed series and other series in China and across the Northern Hemisphere indicate that, on a long-term scale, cold–warm variations had been in phase across the whole hemisphere during the past 5000 years; on the century to multi-century scale, the beginning and the ending times varied from region to region, thus implying that climate changes did not occur simultaneously in different regions.



2021 ◽  
Vol 8 ◽  
Author(s):  
Sydne Record ◽  
Nicole M. Voelker ◽  
Phoebe L. Zarnetske ◽  
Nathan I. Wisnoski ◽  
Jonathan D. Tonkin ◽  
...  

Global loss of biodiversity and its associated ecosystem services is occurring at an alarming rate and is predicted to accelerate in the future. Metacommunity theory provides a framework to investigate multi-scale processes that drive change in biodiversity across space and time. Short-term ecological studies across space have progressed our understanding of biodiversity through a metacommunity lens, however, such snapshots in time have been limited in their ability to explain which processes, at which scales, generate observed spatial patterns. Temporal dynamics of metacommunities have been understudied, and large gaps in theory and empirical data have hindered progress in our understanding of underlying metacommunity processes that give rise to biodiversity patterns. Fortunately, we are at an important point in the history of ecology, where long-term studies with cross-scale spatial replication provide a means to gain a deeper understanding of the multiscale processes driving biodiversity patterns in time and space to inform metacommunity theory. The maturation of coordinated research and observation networks, such as the United States Long Term Ecological Research (LTER) program, provides an opportunity to advance explanation and prediction of biodiversity change with observational and experimental data at spatial and temporal scales greater than any single research group could accomplish. Synthesis of LTER network community datasets illustrates that long-term studies with spatial replication present an under-utilized resource for advancing spatio-temporal metacommunity research. We identify challenges towards synthesizing these data and present recommendations for addressing these challenges. We conclude with insights about how future monitoring efforts by coordinated research and observation networks could further the development of metacommunity theory and its applications aimed at improving conservation efforts.



Water ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2186 ◽  
Author(s):  
Nahid Atashi ◽  
Dariush Rahimi ◽  
Mustafa Al Kuisi ◽  
Anwar Jiries ◽  
Henri Vuollekoski ◽  
...  

In this study, we performed model simulations to investigate the spatial, seasonal, and annual dew yield during 40 years (1979–2018) at ten locations reflecting the variation of climate and environmental conditions in Jordan. In accordance with the climate zones in Jordan, the dew formation had distinguished characteristics features with respect to the yield, seasonal variation, and spatial variation. The highest water dew yield (an overall annual mean cumulative dew yield as high as 88 mm) was obtained for the Mountains Heights Plateau, which has a Mediterranean climate. The least dew yield (as low as 19 mm) was obtained in Badia, which has an arid climate. The dew yield had a decreasing trend in the past 40 years due to climate change impacts such as increased desertification and the potential of sand and dust storms in the region. In addition, increased anthropogenic air pollution slows down the conversion of vapor to liquid phase change, which also impacts the potential of dew formation. The dew yield showed three distinguished seasonal patterns reflecting the three climates in Jordan. The Mountains Heights Plateau (Mediterranean climate) has the highest potential for dew harvesting (especially during the summer) than Badia (semi-arid climate).



Water ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 4 ◽  
Author(s):  
Xiaoai Dai ◽  
Xingping Yang ◽  
Meilian Wang ◽  
Yu Gao ◽  
Senhao Liu ◽  
...  

The widely distributed lakes, as one of the major components of the inland water system, are the primary available freshwater resources on the earth and are sensitive to accelerated climate change and extensive human activities. Lakes play an important role in the terrestrial water cycle and biogeochemical cycle and substantially influence the health of humans living in the surrounding areas. Given the importance of lakes in the ecosystem, long-term monitoring of dynamic changes has important theoretical and practical significance. Here, we extracted water body information and monitored the long-term dynamics of Bosten Lake, which is the largest inland lake in China. We quantified the meteorological factors of the study area from the observation data of meteorological stations between 1988 and 2018. The characteristics of climate change and its correlation with the change of area in the Bosten Lake Basin in the past 30 years were analyzed. The major contributions of this study are as follows: (1) The initial water body was segmented based on the water index model Normalized Difference Water Index (NDWI) and Modified Normalized Difference Water Index (MNDWI) with a pre-assigned threshold value. The results were evaluated with the area extracted through artificial visual interpretation. Then we conducted mathematical morphology operators, opening and closing operations, and median filter to eliminate noise to ensure the accuracy of water body information extraction from the Bosten Lake. A long-term water surface area database of the Bosten Lake was established from high-resolution remote sensing images during 1988–2018. (2) Due to the seasonal difference of snow, ice content, and other objects on images, the areadynamics of Bosten Lake in the recent 30 years were analyzed separately in dry season and rainy season. The water surface area of Bosten Lake showed large inter-annual variations between 1988–2018. (3) Based on the assumption that climatic change has more direct effects on lake than human activities, six meteorological factors were selected to analyze the impacts of climate change on the annual mean lake surface area. The result indicated that in the past 30 years, climate conditions in the Bosten Lake Basin fluctuated greatly. We conducted correlations analysis between the areal dynamics of the Bosten Lake and the meteorological factors. Here, the annual average evaporation had the highest correlation with the areal dynamics of Bosten Lake followed by air temperature, precipitation, sunshine hours, and relative humidity, while the annual average wind speed had the weakest correlation.



2001 ◽  
Vol 8 (5) ◽  
pp. 419-426 ◽  
Author(s):  
Alan R. Shons ◽  
Gerard Mosiello

Background The techniques of breast reconstruction have evolved and matured over the past 25 years. Recent studies have proven the benefit of breast reconstruction for breast cancer patients. Methods The authors reviewed the recent literature on the techniques of breast reconstruction and the effects of reconstruction on patients following surgery for breast cancer. The findings in recent studies are correlated with the experience of the authors. Results A better understanding has been gained regarding surgical techniques of breast reconstruction as well as the proper indications for the various methods. The criteria of patient benefit have been defined by recent long-term studies. Conclusions Breast reconstruction following mastectomy has been proven to be a safe and beneficial procedure.



2017 ◽  
Vol 13 (3) ◽  
pp. 267-301 ◽  
Author(s):  
Lilo M. K. Henke ◽  
F. Hugo Lambert ◽  
Dan J. Charman

Abstract. The El Niño–Southern Oscillation (ENSO) is the most important source of global climate variability on interannual timescales and has substantial environmental and socio-economic consequences. However, it is unclear how it interacts with large-scale climate states over longer (decadal to centennial) timescales. The instrumental ENSO record is too short for analysing long-term trends and variability and climate models are unable to accurately simulate past ENSO states. Proxy data are used to extend the record, but different proxy sources have produced dissimilar reconstructions of long-term ENSO-like climate change, with some evidence for a temperature–precipitation divergence in ENSO-like climate over the past millennium, in particular during the Medieval Climate Anomaly (MCA; AD  ∼  800–1300) and the Little Ice Age (LIA; AD  ∼  1400–1850). This throws into question the stability of the modern ENSO system and its links to the global climate, which has implications for future projections. Here we use a new statistical approach using weighting based on empirical orthogonal function (EOF) to create two new large-scale reconstructions of ENSO-like climate change derived independently from precipitation proxies and temperature proxies. The method is developed and validated using model-derived pseudo-proxy experiments that address the effects of proxy dating error, resolution, and noise to improve uncertainty estimations. We find no evidence that temperature and precipitation disagree over the ENSO-like state over the past millennium, but neither do they agree strongly. There is no statistically significant difference between the MCA and the LIA in either reconstruction. However, the temperature reconstruction suffers from a lack of high-quality proxy records located in ENSO-sensitive regions, which limits its ability to capture the large-scale ENSO signal. Further expansion of the palaeo-database and improvements to instrumental, satellite, and model representations of ENSO are needed to fully resolve the discrepancies found among proxy records and establish the long-term stability of this important mode of climatic variability.



Sign in / Sign up

Export Citation Format

Share Document