Studies in electrohydrodynamics. I. The circulation produced in a drop by an electric field

The elongation of a drop of one dielectric fluid in another owing to the imposition of an electric field has previously been studied assuming that the interface is uncharged and the fluids at rest. For a steady field this is unrealistic, because however small the conductivity of either fluid the charge associated with steady currents must accumulate at the interface till the steady state is established. It is shown that equilibrium can only be established in a drop when circulations are set up both in the drop and its surroundings. A relation is found between the ratios of the conductivity, viscosity and dielectric constant for the drop and surrounding fluid which permits the drop to remain spherical when subjected to a uniform field. The streamlines of the circulation for this case are shown and criteria are given for distinguishing between circulations which carry the surface of the drop towards or away from the poles and for predicting whether the drop will become prolate or oblate. Experiments by S. G. Mason and his co-workers are compared with the theoretical predictions and agreement is found in all cases for which the necessary data are given.

Author(s):  
Matthew R. Pearson ◽  
Jamal Seyed-Yagoobi

Past research in the area of pool boiling within the presence of electric fields has generally focused on the case of uniform field intensity. Any numerical or analytical studies of the effect of non-uniform fields on the motion of bubbles within a dielectric liquid medium have assumed that the bubbles will retain their spherical shape rather than deform. These studies also ignore changes to the electrical field caused by the presence of the bubbles. However, these assumptions are not necessarily accurate as, even in the case of a nominally uniform electric field distribution, bubbles can exhibit considerable physical deformation and the field can become noticeably affected in the vicinity of the bubble. This study explores the effect that a non-uniform electric field can have on vapor bubbles of a dielectric fluid by modeling the physical deformation of the bubble and the alteration of the surrounding field. Numerical results show that the imbalance of electrical stresses at the bubble surface exerts a net dielectrophoretic force on the bubble, propelling the bubble to the vicinity of weakest electric field, thereby enhancing the separation of liquid and vapor phases during pool boiling. However, the proximity of the bubble to one of the electrodes can considerably alter the bubble trajectory due to an attractive force that arises from local distortions of the potential and electric fields. This phenomenon cannot be predicted if bubble deformation and field distortion effects are neglected.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1036
Author(s):  
Hanis Hamizah Hizamul-Din ◽  
Normiza Mohamad Nor ◽  
Nurul Nadia Ahmad ◽  
Nur Farahi Idris ◽  
Azwan Mahmud

Experimental work on grounding systems has shown that the characteristics of grounding systems under high impulse conditions are different than those obtained at steady-state conditions. Investigations on the grounding systems under high impulse conditions make it evident that ionization process could occur in soil, due to field enhancement in air voids in the soil. This process can lead to an ionization zone that reduces the impulse resistance of grounding systems (due to an enlargement of a virtually increased cross-sectional area) from its steady state. There have been many studies pointing towards the effect of various soils and the ground electrode’s arrangement on the reduction of impulse resistance from its steady state, and its decrease with increasing currents. It was, however, noted that very few studies on the effect of the configurations of horizontal ground electrodes have been performed by field measurements before. This work presents the experimental and simulated work of various configurations of ground electrodes, with spikes which are thought to enhance the ionization process in soil. In this paper, field measurement was set up, and the results of field measurements were applied with finite element method (FEM) to obtain the electric field values. It was demonstrated that with the addition of spike on the electrodes, a high electric field was computed. The time to peak current, discharged time and impulse impedance were also analyzed for various horizontal ground electrodes.


In this paper we consider the development of the flow field in and about a liquid drop immersed in a conducting fluid, induced by an electric field stress. We place special emphasis to the case when the applied electric field is a d.c. field. We assume that the electric field stress is set up instantaneously and investigate the development of the flow field as the drop is being deformed. Thus, the present work is an extension of Sir Geoffrey Taylor’s work concerning the steady state flow field set up by a d.c. field and the author’s work concerning the quasi-steady state flow generated by an a.c. field. In the case of a d.c. field, the fluid circulation in the proximity of the drop surface initially forms closed loops which eventually propagate to infinity. Also, in the proximity of the drop surface, the developing flow field may be more intense and even directed in opposite sense in comparison with that of the steady state. In the limit, when the time t tends to infinity, the solution presented here converges to the solutions established in the papers referred to above.


Author(s):  
G. F. Rempfer

In photoelectron microscopy (PEM), also called photoemission electron microscopy (PEEM), the image is formed by electrons which have been liberated from the specimen by ultraviolet light. The electrons are accelerated by an electric field before being imaged by an electron lens system. The specimen is supported on a planar electrode (or the electrode itself may be the specimen), and the accelerating field is applied between the specimen, which serves as the cathode, and an anode. The accelerating field is essentially uniform except for microfields near the surface of the specimen and a diverging field near the anode aperture. The uniform field forms a virtual image of the specimen (virtual specimen) at unit lateral magnification, approximately twice as far from the anode as is the specimen. The diverging field at the anode aperture in turn forms a virtual image of the virtual specimen at magnification 2/3, at a distance from the anode of 4/3 the specimen distance. This demagnified virtual image is the object for the objective stage of the lens system.


1997 ◽  
Vol 503 ◽  
Author(s):  
B. K. Diefenderfer ◽  
I. L. Al-Qadi ◽  
J. J. Yoho ◽  
S. M. Riad ◽  
A. Loulizi

ABSTRACTPortland cement concrete (PCC) structures deteriorate with age and need to be maintained or replaced. Early detection of deterioration in PCC (e.g., alkali-silica reaction, freeze/thaw damage, or chloride presence) can lead to significant reductions in maintenance costs. However, it is often too late to perform low-cost preventative maintenance by the time deterioration becomes evident. By developing techniques that would enable civil engineers to evaluate PCC structures and detect deterioration at early stages (without causing further damage), optimization of life-cycle costs of the constructed facility and minimization of disturbance to the facility users can be achieved.Nondestructive evaluation (NDE) methods are potentially one of the most useful techniques ever developed for assessing constructed facilities. They are noninvasive and can be performed rapidly. Portland cement concrete can be nondestructively evaluated by electrically characterizing its complex dielectric constant. The real part of the dielectric constant depicts the velocity of electromagnetic waves in PCC. The imaginary part, termed the “loss factor,” describes the conductivity of PCC and the attenuation of electromagnetic waves.Dielectric properties of PCC have been investigated in a laboratory setting using a parallel plate capacitor operating in the frequency range of 0.1 to 40.1MIHz. This capacitor set-up consists of two horizontal-parallel plates with an adjustable separation for insertion of a dielectric specimen (PCC). While useful in research, this approach is not practical for field implementation. A new capacitor probe has been developed which consists of two plates, located within the same horizontal plane, for placement upon the specimen to be tested. Preliminary results show that this technique is feasible and results are promising; further testing and evaluation is currently underway.


1979 ◽  
Vol 44 (3) ◽  
pp. 841-853 ◽  
Author(s):  
Zbyněk Ryšlavý ◽  
Petr Boček ◽  
Miroslav Deml ◽  
Jaroslav Janák

The problem of the longitudinal temperature distribution was solved and the bearing of the temperature profiles on the qualitative characteristics of the zones and on the interpretation of the record of the separation obtained from a universal detector was considered. Two approximative physical models were applied to the solution: in the first model, the temperature dependences of the mobilities are taken into account, the continuous character of the electric field intensity at the boundary being neglected; in the other model, the continuous character of the electric field intensity is allowed for. From a comparison of the two models it follows that in practice, the variations of the mobilities with the temperature are the principal factor affecting the shape of the temperature profiles, the assumption of a discontinuous jump of the electric field intensity at the boundary being a good approximation to the reality. It was deduced theoretically and verified experimentally that the longitudinal profiles can appreciably affect the longitudinal variation of the effective mobilities in the zone, with an infavourable influence upon the qualitative interpretation of the record. Pronounced effects can appear during the analyses of the minor components, where in the corresponding short zone a temperature distribution occurs due to the influence of the temperatures of the neighbouring zones such that the temperature in the zone of interest in fact does not attain a constant value in axial direction. The minor component does not possess the steady-state mobility throughout the zone, which makes the identification of the zone rather difficult.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Tatiana I. Becker ◽  
Yuriy L. Raikher ◽  
Oleg V. Stolbov ◽  
Valter Böhm ◽  
Klaus Zimmermann

Abstract Magnetoactive elastomers (MAEs) are a special type of smart materials consisting of an elastic matrix with embedded microsized particles that are made of ferromagnetic materials with high or low coercivity. Due to their composition, such elastomers possess unique magnetic field-dependent material properties. The present paper compiles the results of investigations on MAEs towards an approach of their potential application as vibrating sensor elements with adaptable sensitivity. Starting with the model-based and experimental studies of the free vibrational behavior displayed by cantilevers made of MAEs, it is shown that the first bending eigenfrequency of the cantilevers depends strongly on the strength of an applied uniform magnetic field. The investigations of the forced vibration response of MAE beams subjected to in-plane kinematic excitation confirm the possibility of active magnetic control of the amplitude-frequency characteristics. With change of the uniform field strength, the MAE beam reveals different steady-state responses for the same excitation, and the resonance may occur at various ranges of the excitation frequency. Nonlinear dependencies of the amplification ratio on the excitation frequency are obtained for different magnitudes of the applied field. Furthermore, it is shown that the steady-state vibrations of MAE beams can be detected based on the magnetic field distortion. The field difference, which is measured simultaneously on the sides of a vibrating MAE beam, provides a signal with the same frequency as the excitation and an amplitude proportional to the amplitude of resulting vibrations. The presented prototype of the MAE-based vibrating unit with the field-controlled “configuration” can be implemented for realization of acceleration sensor systems with adaptable sensitivity. The ongoing research on MAEs is oriented to the use of other geometrical forms along with beams, e.g. two-dimensional structures such as membranes.


1984 ◽  
Vol 106 (1) ◽  
pp. 29-35 ◽  
Author(s):  
P. Cawley

The susceptibility to bias error of two methods for computing transfer (frequency response) functions from spectra produced by FFT-based analyzers using random excitation has been investigated. Results from tests with an FFT analyzer on a single degree-of-freedom system set up on an analogue computer show good agreement with the theoretical predictions. It has been shown that, around resonance, the bias error in the transfer function estimate H2 (Syy/Sxy*) is considerably less than that in the more commonly used estimate, H1 (Sxy/Sxx). The record length, and hence the testing time, required for a given accuracy is reduced by over 50 percent if the H2 calculation procedure is used. The analysis has also shown that if shaker excitation is used on lightly damped structures with low modal mass, it is important to minimize the mass of the force gage and the moving element of the shaker.


1991 ◽  
Vol 227 ◽  
Author(s):  
Rajeevi Subramanian ◽  
Michael T. Pottiger ◽  
Jacqueline H. Morris ◽  
Joseph P. Curilla

ABSTRACTMoisture absorption and its effect on electrical properties were measured for several polyimides. A Quartz Crystal Microbalance (QCM) was used to investigate the moisture absorption in BPDA/PPD, PMDA/ODA, and BTDA//ODA/MPD polyimides. The steady-state moisture uptake in polyimides as a function of relative humidity (RH) was determined by exposing film samples to successively higher RH values ranging from 10 to 85% at 25°C. The isothermal moisture absorption as a function of percent RH was found to be nearly linear for all of the polyimides studied. The effect of moisture on the electrical properties of a BPDA/PPD polyimide was also investigated. The relative dielectric constant at 25 °C was found to be a linear function of the moisture absorbed.


2009 ◽  
Vol 626 ◽  
pp. 367-393 ◽  
Author(s):  
STEFAN MÄHLMANN ◽  
DEMETRIOS T. PAPAGEORGIOU

The effect of an electric field on a periodic array of two-dimensional liquid drops suspended in simple shear flow is studied numerically. The shear is produced by moving the parallel walls of the channel containing the fluids at equal speeds but in opposite directions and an electric field is generated by imposing a constant voltage difference across the channel walls. The level set method is adapted to electrohydrodynamics problems that include a background flow in order to compute the effects of permittivity and conductivity differences between the two phases on the dynamics and drop configurations. The electric field introduces additional interfacial stresses at the drop interface and we perform extensive computations to assess the combined effects of electric fields, surface tension and inertia. Our computations for perfect dielectric systems indicate that the electric field increases the drop deformation to generate elongated drops at steady state, and at the same time alters the drop orientation by increasing alignment with the vertical, which is the direction of the underlying electric field. These phenomena are observed for a range of values of Reynolds and capillary numbers. Computations using the leaky dielectric model also indicate that for certain combinations of electric properties the drop can undergo enhanced alignment with the vertical or the horizontal, as compared to perfect dielectric systems. For cases of enhanced elongation and alignment with the vertical, the flow positions the droplets closer to the channel walls where they cause larger wall shear stresses. We also establish that a sufficiently strong electric field can be used to destabilize the flow in the sense that steady-state droplets that can exist in its absence for a set of physical parameters, become increasingly and indefinitely elongated until additional mechanisms can lead to rupture. It is suggested that electric fields can be used to enhance such phenomena.


Sign in / Sign up

Export Citation Format

Share Document