The chemical potential in thermodynamic systems under non-hydrostatic stresses

It is proved that a chemical potential μ v = u v – Ts v + pv v may be introduced for every chemical component v which may be considered a possible component everywhere in a multiphase system in thermodynamic equilibrium under non-hydrostatic stresses, where —3 p is the trace of the stress tensor. It is a condition of equilibrium that μ v has the same value throughout such a system and it is shown that in a virtual infinitesimal variation d U = T d S + d W + Ʃ v μ v d N v , where U, S are the total energy and entropy of the multi-phase system, and d W is the total mechanical work done on the system. At an interface between phases where a discontinuous displacement is permitted, it is shown also that μ v = u v - Ts v + P n v v , for both phases in contact at the interface, P n being the normal component of the pressure at the interface. In a system in which each phase is under a uniform stress and is connected to at least one other phase by such an interface, all phases at equilibrium must thus have the same value of p , and the normal component of the pressure at every such interface must also be p . An important example of this latter result is that of a fluid-solid system, for which, if p is the fluid pressure, the solid must be under an equal hydrostatic pressure p together with a shear stress whose principal directions are perpendicular to the normal of the interface, this new result representing a considerable restriction on the possible stress in a solid at chemical equilibrium with the fluid. The chemical potential is not assumed to exist but is introduced as an undetermined multiplier in the application of the Gibbs condition of thermodynamic equilibrium, and all its important properties are deduced. The same method may be applied more simply in hydrostatic cases.

Foods ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1753
Author(s):  
Patrick Wittek ◽  
Felix Ellwanger ◽  
Heike P. Karbstein ◽  
M. Azad Emin

Plant-based meat analogues that mimic the characteristic structure and texture of meat are becoming increasingly popular. They can be produced by means of high moisture extrusion (HME), in which protein-rich raw materials are subjected to thermomechanical stresses in the extruder at high water content (>40%) and then forced through a cooling die. The cooling die, or generally the die section, is known to have a large influence on the products’ anisotropic structures, which are determined by the morphology of the underlying multi-phase system. However, the morphology development in the process and its relationship with the flow characteristics are not yet well understood and, therefore, investigated in this work. The results show that the underlying multi-phase system is already present in the screw section of the extruder. The morphology development mainly takes place in the tapered transition zone and the non-cooled zone, while the cooled zone only has a minor influence. The cross-sectional contraction and the cooling generate elongational flows and tensile stresses in the die section, whereas the highest tensile stresses are generated in the transition zone and are assumed to be the main factor for structure formation. Cooling also has an influence on the velocity gradients and, therefore, the shear stresses; the highest shear stresses are generated towards the die exit. The results further show that morphology development in the die section is mainly governed by deformation and orientation, while the breakup of phases appears to play a minor role. The size of the dispersed phase, i.e., size of individual particles, is presumably determined in the screw section and then stays the same over the die length. Overall, this study reveals that morphology development and flow characteristics need to be understood and controlled for a successful product design in HME, which, in turn, could be achieved by a targeted design of the extruders die section.


2012 ◽  
Vol 13 (6) ◽  
pp. 703-708 ◽  
Author(s):  
R. Fryczkowski ◽  
M. Gorczowska ◽  
B. Fryczkowska ◽  
J. Janicki

1980 ◽  
Vol 102 (2) ◽  
pp. 129-132
Author(s):  
R. B. Emery

Theory and proof are presented here related to fluid pressure control of bulk solids flowability. They are directed toward a quantitative design goal for fluid-solids flow systems. An effort is made to relate multiphase system concept to existing soil mechanics, strength of material and bulk solids flow theory. Gas or liquid interstitial loads often add cumulative effects to the mechanical loads normally considered in bulk solids flow systems. Summation of the mechanical, gas and liquid loads form the basis for multiphase system design. Useful savings in design, construction and maintenance are expected from application of multiphase theory. Quantitative design can, in some cases, provide flow, no-flow, or a controlled combination of flow and no-flow.


2021 ◽  
Vol 4 ◽  
pp. 121-126
Author(s):  
Rezza Ruzuqi ◽  
Victor Danny Waas

Composite material is a material that has a multi-phase system composed of reinforcing materials and matrix materials. Causes the composite materials to have advantages in various ways such as low density, high mechanical properties, performance comparable to metal, corrosion resistance, and easy to fabricate. In the marine and fisheries industry, composite materials made from fiber reinforcement, especially fiberglass, have proven to be very special and popular in boat construction because they have the advantage of being chemically inert (both applied in general and marine environments), light, strong, easy to print, and price competitiveness. Thus in this study, tensile and impact methods were used to determine the mechanical properties of fiberglass polymer composite materials. Each test is carried out on variations in the amount of fiberglass laminate CSM 300, CSM 450 and WR 600 and variations in weight percentage 99.5% -0.5%, 99% -1%, 98.5% -1, 5%, 98% -2% and 97.5%-2.5% have been used. The results showed that the greater the number of laminates, the greater the impact strength, which was 413,712 MPa, and the more the percentage of hardener, the greater the impact strength, which was 416,487 MPa. The results showed that the more laminate the tensile strength increased, which was 87.054 MPa, and the more the percentage of hardener, the lower the tensile strength, which was 73.921 MPa.


Author(s):  
Robert T. Hanlon

In his third and most famous paper, Gibbs created chemical potential to enable analysis of equilibrium in multi-species / multi-phase systems, introduced his eponymous phase rule, and developed the conceptual framework for composite properties of matter. By combining math and science, he demonstrated the usefulness of calculus in thermodynamics.


Materials ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5188
Author(s):  
Iris Raffeis ◽  
Frank Adjei-Kyeremeh ◽  
Uwe Vroomen ◽  
Silvia Richter ◽  
Andreas Bührig-Polaczek

Al-Cu-Li alloys are famous for their high strength, ductility and weight-saving properties, and have for many years been the aerospace alloy of choice. Depending on the alloy composition, this multi-phase system may give rise to several phases, including the major strengthening T1 (Al2CuLi) phase. Microstructure investigations have extensively been reported for conventionally processed alloys with little focus on their Additive Manufacturing (AM) characterised microstructures. In this work, the Laser Powder Bed Fusion (LPBF) built microstructures of an AA2099 Al-Cu-Li alloy are characterised in the as-built (no preheating) and preheat-treated (320 °C, 500 °C) conditions using various analytical techniques, including Synchrotron High-Energy X-ray Diffraction (S-HEXRD). The observed dislocations in the AM as-built condition with no detected T1 precipitates confirm the conventional view of the difficulty of T1 to nucleate on dislocations without appropriate heat treatments. Two main phases, T1 (Al2CuLi) and TB (Al7.5Cu4Li), were detected using S-HEXRD at both preheat-treated temperatures. Higher volume fraction of T1 measured in the 500 °C (75.2 HV0.1) sample resulted in a higher microhardness compared to the 320 °C (58.7 HV0.1) sample. Higher TB volume fraction measured in the 320 °C sample had a minimal strength effect.


2019 ◽  
Vol 1 (5) ◽  
Author(s):  
Abdullah Musa Ali ◽  
Eswaran Padmanabhan ◽  
Abubakar Mijinyawa ◽  
Mohammed Yerima Kwaya

1997 ◽  
Vol 473 ◽  
Author(s):  
M. D. Thouless

ABSTRACTDiffusional mechanisms of electromigration and stress relaxation involve the flow of atoms in response to a gradient in chemical potential along an interface. This gradient in chemical potential may be provided by the component of an electric field parallel to the interface, or it may be established by the normal component of stresses along it. In either case, considerations of continuity of the potential dictate that diffusive flow must also be induced along any other boundary that intersects the interface. As an example, in this paper, a model system that contains grain boundaries normal to an applied electric field is analyzed. While the electric field does not directly induce diffusion along these grain boundaries, it is shown that a complimentary flux must be induced along them. The effect of this flux on electromigration is discussed in this paper. Furthermore, it is well-known that non-homogeneous diffusion of matter along boundaries induces elastic distortions and stress gradients. These in turn, influence the diffusion process. The effect of these elastic distortions on the atomic flux has been examined by considering diffusion along a single interface in an elastic medium. Prior studies of diffusional cavity growth have established the magnitudes of non-dimensional time-scales over which the deposition of atoms along the grain boundaries can be assumed to be essentially uniform. Such an assumption considerably simplifies analyses for stress evolution in these problems. The appropriate time-scales over which such a simplification can be made for electromigration are discussed in this paper, and illustrated by some model calculations.


1998 ◽  
Vol 51 (2) ◽  
pp. 349-360 ◽  
Author(s):  
B. M. Suleiman ◽  
S.E. Gustafsson ◽  
E. Karawacki ◽  
R. Glamheden ◽  
U. Lindblom

Sign in / Sign up

Export Citation Format

Share Document