scholarly journals A flu optical immunoassay (ThermoBioStar'sFLU OIA): a diagnostic tool for improved influenza management

2001 ◽  
Vol 356 (1416) ◽  
pp. 1915-1924 ◽  
Author(s):  
S. P. Tucker ◽  
C. Cox ◽  
J. Steaffens

ThermoBioStar'sand Biota'sflu optical immunoassay (FLU OIA) is a rapid test designed to diagnose influenza A and B infection using a variety of specimen types. The assay uses highly sensitive thin–film detection methods, coupled with specific monoclonal antibodies to the nucleoprotein. The test is simple to perform, requires no instrumentation and is intended to provide a result within 15min of test initiation in the ‘point–of–care’ environment. In initial clinical studies, the assay was demonstrated to be equivalent to culture in identifying infected individuals. Subsequent independent studies using a variety of sample types have demonstrated sensitivity ranging from 48 to 100% and specificities ranging from 93 to 97%. In addition to detecting human strains, this assay has been demonstrated to be capable of detecting a variety of avian and non–human mammalian influenza viruses. The FLU OIA test has been used in large–scale surveillance schemes intended to provide rapid epidemiological data during normal influenza seasons and has demonstrated the potential for fulfilling a similar role for multispecies surveillance in, for example, conditions that offer challenges for conventional virus isolation methods. Conceivably, such use should facilitate the timely recognition of influenza outbreaks and prioritization of positive specimens for more conventional, laboratory characterization, leading to improved interpandemic surveillance and rapid reaction in the face of the next pandemic.

2013 ◽  
Vol 368 (1614) ◽  
pp. 20120199 ◽  
Author(s):  
Cécile Viboud ◽  
Martha I. Nelson ◽  
Yi Tan ◽  
Edward C. Holmes

In the past decade, rapid increases in the availability of high-resolution molecular and epidemiological data, combined with developments in statistical and computational methods to simulate and infer migration patterns, have provided key insights into the spatial dynamics of influenza A viruses in humans. In this review, we contrast findings from epidemiological and molecular studies of influenza virus transmission at different spatial scales. We show that findings are broadly consistent in large-scale studies of inter-regional or inter-hemispheric spread in temperate regions, revealing intense epidemics associated with multiple viral introductions, followed by deep troughs driven by seasonal bottlenecks. However, aspects of the global transmission dynamics of influenza viruses are still debated, especially with respect to the existence of tropical source populations experiencing high levels of genetic diversity and the extent of prolonged viral persistence between epidemics. At the scale of a country or community, epidemiological studies have revealed spatially structured diffusion patterns in seasonal and pandemic outbreaks, which were not identified in molecular studies. We discuss the role of sampling issues in generating these conflicting results, and suggest strategies for future research that may help to fully integrate the epidemiological and evolutionary dynamics of influenza virus over space and time.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
David R. McIlwain ◽  
Han Chen ◽  
Maria Apkarian ◽  
Melton Affrime ◽  
Bonnie Bock ◽  
...  

Abstract Background Influenza places a significant burden on global health and economics. Individual case management and public health efforts to mitigate the spread of influenza are both strongly impacted by our ability to accurately and efficiently detect influenza viruses in clinical samples. Therefore, it is important to understand the performance characteristics of available assays to detect influenza in a variety of settings. We provide the first report of relative performance between two products marketed to streamline detection of influenza virus in the context of a highly controlled volunteer influenza challenge study. Methods Nasopharyngeal swab samples were collected during a controlled A/California/2009/H1N1 influenza challenge study and analyzed for detection of virus shedding using a validated qRT-PCR (qPCR) assay, a sample-to-answer qRT-PCR device (BioMerieux BioFire FilmArray RP), and an immunoassay based rapid test kit (Quidel QuickVue Influenza A + B Test). Results Relative to qPCR, the sensitivity and specificity of the BioFire assay was 72.1% [63.7–79.5%, 95% confidence interval (CI)] and 93.5% (89.3–96.4%, 95% CI) respectively. For the QuickVue rapid test the sensitivity was 8.5% (4.8–13.7%, 95% CI) and specificity was 99.2% (95.6–100%, 95% CI). Conclusion Relative to qPCR, the BioFire assay had superior performance compared to rapid test in the context of a controlled influenza challenge study.


2021 ◽  
Author(s):  
Kamille Fogh ◽  
Jarl E Strange ◽  
Bibi FSS Scharff ◽  
Alexandra RR Eriksen ◽  
Rasmus B Hasselbalch ◽  
...  

Background National data on the spread of SARS-CoV-2 infection and knowledge on associated risk factors are important for understanding the course of the pandemic. Testing Denmark is a national large-scale epidemiological surveillance study of SARS-CoV-2 in the Danish population. Methods Between September and October 2020, approximately 1.3 million of 5.8 million Danish citizens (age > 15 years) were randomly invited to fill in an electronic questionnaire covering COVID-19 exposures and symptoms. The prevalence of SARS-CoV-2 antibodies was determined by Point-of Care rapid Test (POCT) distributed to participants home addresses. Findings In total 318,552 participants (24.5% invitees) completed the questionnaire and provided the result of the POCT. Of these, 2,519 (0.79%) were seropositive (median age 55 years) and women were more often seropositive than men, interquartile range (IQR) 42-64, 40.2% males. Of participants with a prior positive Polymerase Chain Reaction (PCR) test (n=1,828), 29.1% were seropositive in the POCT. Seropositivity increased with age irrespective of sex. Elderly participants (>61 years) reported less symptoms and had less frequently been tested for SARS-CoV-2 compared to younger participants. Seropositivity was associated with physical contact with SARS-CoV-2 infected individuals (Risk ratio (RR) 7.43, 95% CI: 6.57-8.41) and in particular household members (RR 17.70, 95% CI: 15.60-20.10). Home care workers had a higher risk of seropositivity (RR 2.09 (95% CI: 1.58-2.78) as compared to office workers. Geographic population density was not associated to seropositivity. A high degree of compliance with national preventive recommendations was reported (e.g., > 80% use of face masks), but no difference was found between seropositive and seronegative participants. Interpretation This study provides insight into the immunity of the Danish population seven to eight months after the first COVID-19 case in Denmark. The seroprevalence was lower than expected probably due to a low sensitivity of the POCT used or due to challenges relating to the reading of test results. Occupation or exposure in local communities were major routes of infection. As elderly participants were more often seropositive despite fewer symptoms and less PCR tests performed, more emphasis should be placed on testing this age group.


Author(s):  
Anastasiya Kostyusheva ◽  
Sergey Brezgin ◽  
Yurii Babin ◽  
Irina Vasil'eva ◽  
Dmitry Kostyushev ◽  
...  

Infectious diseases are a global health problem affecting billions of people. Developing rapid and sensitive diagnostic tools is key for successful patient management and curbing disease spread. Currently available diagnostics are very specific and sensitive but time-consuming and require expensive laboratory settings and well-trained personnel; thus, they are not available in resource-limited areas, for the purposes of large-scale screenings and in case of outbreaks and epidemics. Developing new, rapid, and affordable point-of-care diagnostic assays is urgently needed. This review focuses on CRISPR-based technologies and their perspectives to become platforms for point-of-care nucleic acid detection methods and as deployable diagnostic platforms that could help to identify and curb outbreaks and emerging epidemics. We describe the mechanisms and function of different classes and types of CRISPR-Cas systems, including pros and cons for developing molecular diagnostic tests and applications of each type to detect a wide range of infectious agents. Many Cas proteins (Cas9, Cas12, Cas13, Cas14) have been leveraged to create highly accurate and sensitive diagnostic tools combined with technologies of signal amplification and fluorescent, potentiometric, colorimetric, or lateral flow assay detection. In particular, the most advanced platforms -- SHERLOCK/v2, DETECTR, or CRISPR-Chip -- enable detection of attomolar amounts of pathogenic nucleic acids with specificity comparable to that of PCR but with minimal technical settings. Further developing CRISPR-based diagnostic tools promises to dramatically transform molecular diagnostics, making them easily affordable and accessible virtually anywhere in the world. The burden of socially significant diseases, frequent outbreaks, recent epidemics (MERS, SARS and the ongoing coronoviral nCov-2019 infection) urgently need the developing of express-diagnostic tools. Recently devised CRISPR-technologies represent the unprecedented opportunity to reshape epidemiological surveillance and molecular diagnostics.


2014 ◽  
Vol 89 (6) ◽  
pp. 2990-2994 ◽  
Author(s):  
Colin R. Parrish ◽  
Pablo R. Murcia ◽  
Edward C. Holmes

Influenza A virus (IAV) infections in hosts outside the main aquatic bird reservoirs occur periodically. Although most such cross-species transmission events result in limited onward transmission in the new host, sustained influenza outbreaks have occurred in poultry and in a number of mammalian species, including humans, pigs, horses, seals, and mink. Recently, two distinct strains of IAV have emerged in domestic dogs, with each circulating widely for several years. Here, we briefly outline what is known about the role of intermediate hosts in influenza emergence, summarize our knowledge of the new canine influenza viruses (CIVs) and how they provide key new information on the process of host adaptation, and assess the risk these viruses pose to human populations.


2014 ◽  
Author(s):  
Liang Chen ◽  
Feng Zhu ◽  
Chenglong Xiong ◽  
Zhijie Zhang ◽  
Lufang Jiang ◽  
...  

In 2013, two new avian influenza viruses (AIVs) H7N9 and H10N8 emerged in China caused worldwide concerns. Previous studies have studied their originations independently; this study is the first time to investigate their co-originating characteristics. Gene segments of assorted subtype influenza A viruses, as well as H10N8 and H7N9, were collected from public database. With the help of series software, small and large-scale phylogenetic trees, mean evolutionary rates, and divergence years were obtained successionally. The results demonstrated the two AIVs co-originated from H9N2, and shared a spectrum of mutations in common on many key sites related to pathogenic, tropism and epidemiological characteristics. For a long time, H9N2 viruses had been circulated in eastern and southern China; poultry was the stable and lasting maintenance reservoir. High carrying rate of AIVs H9N2 in poultry had an extremely high risk of co-infections with other influenza viruses, which increased the risk of virus reassortment. It implied that novel AIVs reassortants based on H9N2 might appear and prevail at any time in China; therefore, surveillance of H9N2 AIVs should be given a high priority.


2020 ◽  
Vol 13 (9) ◽  
pp. 1966-1969
Author(s):  
Abdelmohsen Abduallah Alnaeem ◽  
Abdulkareem Al-Shabeb ◽  
Maged Gomaa Hemida

Background and Aim: Influenza type A virus infections are still one of the major concerns for the health of humans and various species of domestic and companion animals. Wild birds play an essential role in the transmission cycle of the virus. Regularly monitoring the spread of the virus is a significant step in its mitigation. Highly pathogenic avian influenza viruses, including H5N1 and H5N8, have been reported in birds in the Arabian Peninsula, including Saudi Arabia, in recent decades. This study aimed to evaluate the immune status of birds, domestic and companion animals for Influenza type A virus in Eastern Province of Saudi Arabia. Materials and Methods: We collected 195 serum samples from dromedary camels, sheep, goats, native breed chickens, doves, dogs, and cats. We tested these sera for the presence of specific antibodies against influenza type A virus using a commercially available enzyme-linked immunosorbent assay. Results: Our results show that 4% of the tested samples had antibodies in sera, including some doves, chickens, and dogs. These data suggest exposure and seroconversion of these animals or birds to the influenza type A virus. Conclusion: The presence of antibodies against influenza type A virus in sera of some animals and birds without a previous vaccination history against the virus indicates a natural exposure history regarding this virus and seroconversion. Further large-scale molecular and epidemiological studies are needed to obtain a better understanding of the dynamics of influenza type A virus among various species of animals and birds.


2021 ◽  
Vol 21 (2) ◽  
pp. 531-537
Author(s):  
Elisa Teixeira Mendes ◽  
Hadassa L. Paranhos ◽  
Isabela C. M. Santos ◽  
Lais Bomediano de Souza ◽  
José Luis Braga de Aquino ◽  
...  

Abstract Objectives: the aim of this study is to evaluate the impact of co-detection of Flu A and RSV using rapid immunochromatographic tests at the point of care, in pediatric patients under 2 years of age in a general hospital. Methods: a retrospective cohort study was conducted to analyze clinical outcomes in hospitalized infants with viral respiratory disease with positive results of rapid immunochromatographic test for RSV and/or Flu-A, from 2013 to 2018. A logistic regression model was adjusted to analyze predictors of orotracheal intubation during hospitalization. Results: we analyzed 220 cases: RSV (192), Flu-A (9), co-detection (19). Lethality rate was 1.8% (2 cases), and 88% (194) were under 1 year of age. Mean time of hospitalizations was higher in patients with co-detection. Variables significantly associated with orotracheal intubation were: younger age in months, comorbidities, RSV and Flu-A co-detection, and bacterial pneumonia during hospitalization. Conclusions: RSV and Flu-Aco-detection was associated with the least favorable clinical prognoses in this study. Rapid test diagnosis may provide important information at the point of care, because molecular panels are not widely accessible in general hospitals. Rapid diagnosis allows timely evaluation and treatment.


2020 ◽  
Vol 40 (2) ◽  
Author(s):  
Ravina ◽  
Anita Dalal ◽  
Hari Mohan ◽  
Minakshi Prasad ◽  
C.S. Pundir

Abstract H1N1 (Swine flu) is caused by influenza A virus, which is a member of Orthomyxoviridae family. Transmission of H1N1 occurs from human to human through air or sometimes from pigs to humans. The influenza virus has different RNA segments, which can reassert to make new virus strain with the possibility to create an outbreak in unimmunized people. Gene reassortment is a process through which new strains are emerging in pigs, as it has specific receptors for both human influenza and avian influenza viruses. H1N1 binds specifically with an α-2,6 glycosidic bond, which is present in human respiratory tract cells as well as in pigs. Considering the fact of fast multiplication of viruses inside the living cells, rapid detection methods need an hour. Currently, WHO recommended methods for the detection of swine flu include real-time PCR in specific testing centres that take 3–4 h. More recently, a number of methods such as Antigen–Antibody or RT-LAMP and DNA biosensors have also been developed that are rapid and more sensitive. This review describes the various challenges in the diagnosis of H1N1, and merits and demerits of conventional vis-à-vis latest methods with special emphasis on biosensors.


2020 ◽  
Author(s):  
David R. McIlwain ◽  
Han Chen ◽  
Maria Apkarian ◽  
Melton Affrime ◽  
Bonnie Bock ◽  
...  

Abstract Background: Influenza places a significant burden on global health and economics. Individual case management and public health efforts to mitigate the spread of influenza are both strongly impacted by our ability to accurately and efficiently detect influenza viruses in clinical samples. Therefore, it is important to understand the performance characteristics of available assays to detect influenza in a variety of settings. We provide the first report of relative performance between two products marketed to streamline detection of influenza virus in the context of a highly controlled volunteer influenza challenge study. Methods: Nasopharyngeal swab samples were collected during a controlled A/California/2009/H1N1 influenza challenge study and analyzed using for detection of virus shedding using a validated qRT-PCR (qPCR) assay, a sample-to-answer qRT-PCR device (BioMerieux BioFire FilmArray RP), and an immunoassay based rapid test kit (Quidel QuickVue Influenza A+B Test).Results: Relative to qPCR, the sensitivity and specificity of the BioFire assay was 72.1% (63.7%-79.5%, 95% Confidence Interval (CI)) and 93.5% (89.3%-96.4%, 95% CI) respectively. For the QuickVue rapid test the sensitivity was 8.5% (4.8%-13.7%, 95% CI) and specificity was 99.2% (95.6%-100%, 95% CI).Conclusion: Relative to qPCR, the BioFire assay had superior performance compared to rapid test in the context of a controlled influenza challenge study.


Sign in / Sign up

Export Citation Format

Share Document