scholarly journals Detection of L1, infectious virions and anti-L1 antibody in domestic rabbits infected with cottontail rabbit papillomavirus

2007 ◽  
Vol 88 (12) ◽  
pp. 3286-3293 ◽  
Author(s):  
Jiafen Hu ◽  
Lynn R. Budgeon ◽  
Nancy M. Cladel ◽  
Timothy D. Culp ◽  
Karla K. Balogh ◽  
...  

Shope papillomavirus or cottontail rabbit papillomavirus (CRPV) is one of the first small DNA tumour viruses to be characterized. Although the natural host for CRPV is the cottontail rabbit (Sylvilagus floridanus), CRPV can infect domestic laboratory rabbits (Oryctolagus cuniculus) and induce tumour outgrowth and cancer development. In previous studies, investigators attempted to passage CRPV in domestic rabbits, but achieved very limited success, leading to the suggestion that CRPV infection in domestic rabbits was abortive. The persistence of specific anti-L1 antibody in sera from rabbits infected with either virus or viral DNA led us to revisit the questions as to whether L1 and infectious CRPV can be produced in domestic rabbit tissues. We detected various levels of L1 protein in most papillomas from CRPV-infected rabbits using recently developed monoclonal antibodies. Sensitive in vitro infectivity assays additionally confirmed that extracts from these papillomas were infectious. These studies demonstrated that the CRPV/New Zealand White rabbit model could be used as an in vivo model to study natural virus infection and viral life cycle of CRPV and not be limited to studies on abortive infections.

2019 ◽  
Vol 20 (15) ◽  
pp. 3811 ◽  
Author(s):  
Xiaoke Feng ◽  
Hao Yu ◽  
Huan Liu ◽  
Xiaonan Yu ◽  
Zhihong Feng ◽  
...  

Polyether-ether-ketone (peek) is one of the most common materials used for load-bearing orthopedic devices owing to its radiolucency and favorable mechanical properties. However, current smooth-surfaced peek implants can lead to fibrous capsule formation. To overcome this issue, here, peek specimens with well-defined internal cross-linked structures (macropore diameters of 1.0–2.0 mm) were fabricated using a three-dimensional (3D) printer, and an acid-etched microporous surface was achieved using injection-molding technology. The cell adhesion properties of smooth and microporous peek specimens was compared in vitro through a scanning electron microscope (SEM), and the soft tissue responses to the both microporous and cross-linked structure of different groups were determined in vivo using a New Zealand white rabbit model, and examined through histologic staining and separating test. The results showed that the acid-etched microporous surface promoted human skin fibroblasts (HSF) adherence, while internal cross-linked structure improved the ability of the peek specimen to form a mechanical combination with soft tissue, especially with the 1.5 mm porous specimen. The peek specimens with both the internal cross-linked structure and external acid-etched microporous surface could effectively promote the close integration of soft tissue and prevent formation of fibrous capsules, demonstrating the potential for clinical application in surgical repair.


2021 ◽  
Vol 26 (1) ◽  
Author(s):  
Guoying Zhang ◽  
Cheng Xue ◽  
Yiming Zeng

Abstract Background We have previously found that β-elemene could inhibit the viability of airway granulation fibroblasts and prevent airway hyperplastic stenosis. This study aimed to elucidate the underlying mechanism and protective efficacy of β-elemene in vitro and in vivo. Methods Microarray and bioinformatic analysis were used to identify altered pathways related to cell viability in a β-elemene-treated primary cell model and to construct a β-elemene-altered ceRNA network modulating the target pathway. Loss of function and gain of function approaches were performed to examine the role of the ceRNA axis in β-elemene's regulation of the target pathway and cell viability. Additionally, in a β-elemene-treated rabbit model of airway stenosis, endoscopic and histological examinations were used to evaluate its therapeutic efficacy and further verify its mechanism of action. Results The hyperactive ILK/Akt pathway and dysregulated LncRNA-MIR143HG, which acted as a miR-1275 ceRNA to modulate ILK expression, were suppressed in β-elemene-treated airway granulation fibroblasts; β-elemene suppressed the ILK/Akt pathway via the MIR143HG/miR-1275/ILK axis. Additionally, the cell cycle and apoptotic phenotypes of granulation fibroblasts were altered, consistent with ILK/Akt pathway activity. In vivo application of β-elemene attenuated airway granulation hyperplasia and alleviated scar stricture, and histological detections suggested that β-elemene's effects on the MIR143HG/miR-1275/ILK axis and ILK/Akt pathway were in line with in vitro findings. Conclusions MIR143HG and ILK may act as ceRNA to sponge miR-1275. The MIR143HG/miR-1275/ILK axis mediates β-elemene-induced cell cycle arrest and apoptosis of airway granulation fibroblasts by modulating the ILK/Akt pathway, thereby inhibiting airway granulation proliferation and ultimately alleviating airway stenosis.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 444
Author(s):  
Alaa Mahran ◽  
Sayed Ismail ◽  
Ayat A. Allam

Treatment of uveitis (i.e., inflammation of the uvea) is challenging due to lack of convenient ophthalmic dosage forms. This work is aimed to determine the efficiency of triamcinolone acetonide (TA)-loaded microemulsion as an ophthalmic delivery system for the treatment of uveitis. Water titration method was used to construct different pseudo-ternary phase diagrams. Twelve microemulsion formulations were prepared using oleic acid, Cremophor EL, and propylene glycol. Among all tested formulations, Formulation F3, composed of oil: surfactant-co-surfactant (1:1): water (15:35:50% w/w, respectively), was found to be stable and showed acceptable pH, viscosity, conductivity, droplet size (211 ± 1.4 nm), and zeta potential (−25 ± 1.7 mV) and almost complete in vitro drug release within 24 h. The in vivo performance of the optimized formulation was evaluated in experimentally uveitis-induced rabbit model and compared with a commercial TA suspension (i.e., Kenacort®-A) either topically or by subconjunctival injection. Ocular inflammation was evaluated by clinical examination, white blood cell count, protein content measurement, and histopathological examination. The developed TA-loaded microemulsion showed superior therapeutic efficiency in the treatment of uveitis with high patient compliance compared to commercial suspension. Hence, it could be considered as a potential ocular treatment option in controlling of uveitis.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 158
Author(s):  
Akshaya Tatke ◽  
Narendar Dudhipala ◽  
Karthik Janga ◽  
Bhavik Soneta ◽  
Bharathi Avula ◽  
...  

Delivering an effective drug load to the posterior section of the ocular tissues, while using a non-invasive technique, has always been a challenge. In this regard, the goal of the present study was to develop sustained release triamcinolone acetonide (TA) loaded polymeric matrix films for ocular delivery. The TA-films were prepared in two different polymer matrices, with drug loadings of 10% and 20% w/w, and they were evaluated for ocular distribution in vivo in a conscious rabbit model. A 4% w/v TA suspension (TA-C) was used as a control for in vitro and in vivo studies. The TA-films, prepared with melt-cast technology, used polyethylene oxide (PEO) and Soluplus® as the polymer matrix. The films were evaluated with respect to assay, content uniformity, excipient interaction, and permeability across isolated rabbit sclera. The distribution of TA in the ocular tissues, post topical administration, was determined in New Zealand male albino rabbits as a function of dose, and was compared against TA-C. The assay of the 10% and 20% w/w film was in the range from 70–79% and 92–94% for the Soluplus® and PEO films, respectively, and content uniformity was in the range of 95–103% for both the films. The assay of the TA from Soluplus® films was less compared with the PEO films and showed an interaction with TA, as revealed by Differential Scanning Calorimetry (DSC). Hence, Soluplus® films were not selected for further studies. No interaction was observed between the drug and PEO polymer matrix. The enhancement of trans-scleral flux and permeability of TA was about 1.16 and 1.33-folds, respectively, from the 10% w/w PEO and 3.5 and 2.12-folds, respectively, from the 20% w/w PEO films, as compared with TA-C formulations. The in vivo studies demonstrate that significantly higher TA levels were observed in the anterior and posterior segments of the eye at the end of 6h with the PEO films. Therefore, the PEO based polymeric films were able to deliver TA into the back of the eye efficiently and for prolonged periods.


Author(s):  
Yanhong Zhao ◽  
Xige Zhao ◽  
Rui Zhang ◽  
Ying Huang ◽  
Yunjie Li ◽  
...  

Repair of articular cartilage defects is a challenging aspect of clinical treatment. Kartogenin (KGN), a small molecular compound, can induce the differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) into chondrocytes. Here, we constructed a scaffold based on chondrocyte extracellular matrix (CECM) and poly(lactic-co-glycolic acid) (PLGA) microspheres (MP), which can slowly release KGN, thus enhancing its efficiency. Cell adhesion, live/dead staining, and CCK-8 results indicated that the PLGA(KGN)/CECM scaffold exhibited good biocompatibility. Histological staining and quantitative analysis demonstrated the ability of the PLGA(KGN)/CECM composite scaffold to promote the differentiation of BMSCs. Macroscopic observations, histological tests, and specific marker analysis showed that the regenerated tissues possessed characteristics similar to those of normal hyaline cartilage in a rabbit model. Use of the PLGA(KGN)/CECM scaffold may mimic the regenerative microenvironment, thereby promoting chondrogenic differentiation of BMSCs in vitro and in vivo. Therefore, this innovative composite scaffold may represent a promising approach for acellular cartilage tissue engineering.


2021 ◽  
Author(s):  
Shuang Lin ◽  
Yuanjia He ◽  
Meihan Tao ◽  
Aijun Wang ◽  
Qiang Ao

Abstract On account of the poor biocompatibility of synthetic prosthesis, millions of rhinoplasty recipients have been forced to choose autologous costal cartilage as grafts, which suffer from limited availability, morbidity at donor site and prolonged operation time. Here, as a promising alternative to autologous costal cartilage, we developed a novel xenogeneic costal cartilage and explored its feasibility as a rhinoplasty graft for the first time. Adopting an improved decellularization protocol, in which the ionic detergent was substituted by trypsin, the resulting decellularized graft was confirmed to preserve more structural components and better mechanics, and eliminate cellular components effectively. The in vitro and in vivo compatibility experiments demonstrated that the decellularized graft showed excellent biocompatibility and biosecurity. Additionally, the functionality assessment of rhinoplasty was performed in a rabbit model, and the condition of grafts after implantation was comprehensively evaluated. The optimized graft exhibited better capacity to reduce the degradation rate and maintain the morphology, in comparison to the decellularized costal cartilage prepared by conventional protocol. These findings indicate that this optimized graft derived from decellularized xenogeneic costal cartilage provides a new prospective for future investigations of rhinoplasty prosthesis and has great potential for clinical application.


2011 ◽  
Vol 65 (1-2) ◽  
pp. 71-81
Author(s):  
Irena Homsek ◽  
Dragica Popadic ◽  
Slobodanka Simic ◽  
Slavica Ristic ◽  
Katarina Vucicevic ◽  
...  

Controlled-release (CR) pharmaceutical formulations offer several advantages over the conventional, immediate release dosage forms of the same drug, including reduced dosing frequency, decreased incidence and/or intensity of adverse effects, greater selectivity of pharmacological activity, reduced drug plasma fluctuation, and better compliance. After a drug product has been registered, and is already on market, minor changes in formulation might be needed. At the same time, the product has to remain effective and safe for patients that could be confirmed via plasma drug concentrations and pharmacokinetic characteristics. It is challenging to predict human absorption and pharmacokinetic characteristics of a drug based on the in vitro dissolution test and the animal pharmacokinetic data. Therefore, the objective of this study was to establish correlation of the pharmacokinetic parameters of carbamazepine (CBZ) CR tablet formulation between the rabbit and the human model, and to establish in vitro in vivo correlation (IVIVC) based on the predicted fractions of absorbed CBZ. Although differences in mean plasma concentration profiles were notified, the data concerning the predicted fraction of drug absorbed were almost superimposable. Accordingly, it can be concluded that rabbits may be representative as an in vivo model for predicting the pharmacokinetics of the CR formulation of CBZ in humans.


2020 ◽  
Author(s):  
Shuang Qu ◽  
Zichen Jiao ◽  
Geng Lu ◽  
Bing Yao ◽  
Ting Wang ◽  
...  

ABSTRACTAlthough blockade of programmed death-ligand 1 (PD-L1) to enhance T cell immune responses shows great promise in tumor immunotherapy, the efficacy of such immune-checkpoint inhibition strategy is limited for patients with solid tumors. The mechanism underlying the limited efficacy of PD-L1 inhibitors remains unclear. Here, we show that human lung adenocarcinoma, regardless of PD-L1 protein positive or negative, all produce a long non-coding RNA isoform of PD-L1 (PD-L1-lnc) via alternative splicing, which promotes lung adenocarcinoma proliferation and metastasis. PD-L1-lnc in various lung adenocarcinoma cells is significantly upregulated by IFNγ in a manner similar to PD-L1 mRNA. Both in vitro and in vivo studies demonstrate that PD-L1-lnc increases proliferation and invasion but decreases apoptosis of lung adenocarcinoma cells. Mechanistically, PD-L1-lnc directly binds to c-Myc and enhances c-Myc transcriptional activity downstream in lung adenocarcinoma cells. Our results provide targeting PD-L1-lnc−c-Myc axis as a novel strategy for lung cancer therapy.


2005 ◽  
Vol 288 (6) ◽  
pp. R1432-R1437 ◽  
Author(s):  
Noritoshi Nagaya ◽  
Hidezo Mori ◽  
Shinsuke Murakami ◽  
Kenji Kangawa ◽  
Soichiro Kitamura

Adrenomedullin (AM) is a potent, long-lasting vasodilator peptide that was originally isolated from human pheochromocytoma. AM signaling is of particular significance in endothelial cell biology since the peptide protects cells from apoptosis, promotes angiogenesis, and affects vascular tone and permeability. The angiogenic effect of AM is mediated by activation of Akt, mitogen-activated protein kinase/extracellular signal-regulated kinase 1/2, and focal adhesion kinase in endothelial cells. Both AM and its receptor, calcitonin receptor-like receptor, are upregulated through a hypoxia-inducible factor-1-dependent pathway under hypoxic conditions. Thus AM signaling plays an important role in the regulation of angiogenesis in hypoxic conditions. Recently, we have developed a nonviral vector, gelatin. Positively charged gelatin holds negatively charged plasmid DNA in its lattice structure. DNA-gelatin complexes can delay gene degradation, leading to efficient gene transfer. Administration of AM DNA-gelatin complexes induces potent angiogenic effects in a rabbit model of hindlimb ischemia. Thus gelatin-mediated AM gene transfer may be a new therapeutic strategy for the treatment of tissue ischemia. Endothelial progenitor cells (EPCs) play an important role in endothelial regeneration. Interestingly, EPCs phagocytose ionically linked DNA-gelatin complexes in coculture, which allows nonviral gene transfer into EPCs. AM gene transfer into EPCs inhibits cell apoptosis and induces proliferation and migration, suggesting that AM gene transfer strengthens the therapeutic potential of EPCs. Intravenous administration of AM gene-modified EPCs regenerate pulmonary endothelium, resulting in improvement of pulmonary hypertension. These results suggest that in vivo and in vitro transfer of AM gene using gelatin may be applicable for intractable cardiovascular disease.


2001 ◽  
Vol 45 (2) ◽  
pp. 485-494 ◽  
Author(s):  
Arnold Louie ◽  
Pamela Kaw ◽  
Partha Banerjee ◽  
Weiguo Liu ◽  
George Chen ◽  
...  

ABSTRACT In vitro time-kill studies and a rabbit model of endocarditis and pyelonephritis were used to define the impact that the order of exposure of Candida albicans to fluconazole (FLC) and amphotericin B (AMB), as sequential and combination therapies, had on the susceptibility of C. albicans to AMB and on the outcome. The contribution of FLC-induced resistance to AMB for C. albicans also was assessed. In vitro, AMB monotherapy rapidly killed each of four C. albicans strains; FLC alone was fungistatic. Preincubation of these fungi with FLC for 18 h prior to exposure to AMB decreased their susceptibilities to AMB for 8 to >40 h. Induced resistance to AMB was transient, but the duration of resistance increased with the length of FLC preincubation. Yeast sequentially incubated with FLC followed by AMB plus FLC (FLC→AMB+FLC) showed fungistatic growth kinetics similar to that of fungi that were exposed to FLC alone. This antagonistic effect persisted for at least 24 h. Simultaneous exposure of C. albicans to AMB and FLC [AMB+FLC(simult)] demonstrated activity similar to that with AMB alone for AMB concentrations of ≥1 μg/ml; antagonism was seen using an AMB concentration of 0.5 μg/ml. The in vitro findings accurately predicted outcomes in our rabbit infection model. In vivo, AMB monotherapy and treatment with AMB for 24 h followed by AMB plus FLC (AMB→AMB+FLC) rapidly sterilized kidneys and cardiac vegetations. AMB+FLC(simult) and FLC→AMB treatments were slower in clearing fungi from infected tissues. FLC monotherapy and FLC→AMB+FLC were both fungistatic and were the least active regimens. No adverse interaction was observed between AMB and FLC for the AMB→FLC regimen. However, FLC→AMB treatment was slower than AMB alone in clearing fungi from tissues. Thus, our in vitro and in vivo studies both demonstrate that preexposure of C. albicans to FLC reduces fungal susceptibility to AMB. The length of FLC preexposure and whether AMB is subsequently used alone or in combination with FLC determine the duration of induced resistance to AMB.


Sign in / Sign up

Export Citation Format

Share Document