scholarly journals Perceived ambiguity of social interactions increases coupling between frontal and temporal nodes of the social brain

2020 ◽  
Author(s):  
Matthew Ainsworth ◽  
Jérôme Sallet ◽  
Olivier Joly ◽  
Diana Kyriazis ◽  
Nikolaus Kriegeskorte ◽  
...  

ABSTRACTSocial behaviour is coordinated by a network of brain regions, including those involved in the perception of social stimuli and those involved in complex functions like inferring perceptual and mental states and controlling social interactions. The properties and function of many of these regions in isolation is relatively well understood but little is known about how these regions interact whilst processing dynamic social interactions. To investigate whether social network connectivity is modulated by social context we collected fMRI data from monkeys viewing “affiliative”, “aggressive”, or “ambiguous” social interactions. We show activation relating to the perception of social interactions along both banks of the superior temporal sulcus, parietal, medial and lateral PFC and caudate nucleus. Within this network we demonstrate that fronto-temporal connectivity are significantly modulated by social context. Crucially, we link the observation of specific behaviours to changes in connectivity within our network. Viewing aggressive or affiliative behaviour was associated with a limited increase in temporo-temporal and premotor-temporal connectivity respectively. By contrast, viewing ambiguous interactions was associated with a pronounced increase in cingulate-cingulate, temporo-temporal, and cingulate-temporal connectivity. We hypothesise that this widespread network synchronisation occurs when cingulate and temporal areas coordinate their activity when more difficult social inferences are made.

2021 ◽  
Author(s):  
Shaheed Azaad ◽  
Günther Knoblich ◽  
Natalie Sebanz

Even the simplest social interactions require us to gather, integrate, and act upon, multiple streams of information about others and our surroundings. In this Element, we discuss how perceptual processes provide us with an accurate account of action-relevant information in social contexts. We overview contemporary theories and research that explores how: (1) individuals perceive others' mental states and actions, (2) individuals perceive affordances for themselves, others, and the dyad, and (3) how social contexts guide our attention to modulate what we perceive. Finally, we review work on the cognitive mechanisms that make joint action possible and discuss their links to perception.


2011 ◽  
Vol 26 (S2) ◽  
pp. 2225-2225
Author(s):  
H. Liljenström

Mesoscopic brain dynamics, typically studied with electro- and magnetoencephalography (EEG and MEG), display a rich complexity of oscillatory and chaotic-like states, including many different frequencies, amplitudes and phases. Presumably, these different dynamical states correspond to different mental states and functions, and studying transitions between such states could provide valuable insights into brain-mind relations that should also be of clinical interest. We use computational methods to investigate these transitions, with the objective of finding relations between structure, dynamics, and function. In particular, we have developed models of paleo- and neocortical structures, in order to study their mesoscopic neurodynamics, as a link between the microscopic neuronal and macroscopic mental events and processes. I will describe several types of models that emphasize network connectivity and structure, but which also include molecular and cellular properties at varying detail, depending on the particular problem and experimental data available. We use these models to study how phase transitions can be induced in the mesoscopic neurodynamics of cortical networks by internal (natural) and external (artificial) factors. I will discuss the models, and relate the simulation results to macroscopic phenomena, such as arousal, attention, anaesthesia, learning, and certain mental disorders.


2020 ◽  
Author(s):  
Miriam E. Weaverdyck ◽  
Mark Allen Thornton ◽  
Diana Tamir

Each individual experiences mental states in their own idiosyncratic way, yet perceivers are able to accurately understand a huge variety of states across unique individuals. How do they accomplish this feat? Do people think about their own anger in the same ways as another person’s? Is reading about someone’s anxiety the same as seeing it? Here, we test the hypothesis that a common conceptual core unites mental state representations across contexts. Across three studies, participants judged the mental states of multiple targets, including a generic other, the self, a socially close other, and a socially distant other. Participants viewed mental state stimuli in multiple modalities, including written scenarios and images. Using representational similarity analysis, we found that brain regions associated with social cognition expressed stable neural representations of mental states across both targets and modalities. This suggests that people use stable models of mental states across different people and contexts.


2020 ◽  
Vol 27 (11) ◽  
pp. 1068-1081
Author(s):  
Xi Liu ◽  
Dongwu Liu ◽  
Yangyang Shen ◽  
Mujie Huang ◽  
Lili Gao ◽  
...  

Matrix Metalloproteinases (MMPs) belong to a family of metal-dependent endopeptidases which contain a series of conserved pro-peptide domains and catalytic domains. MMPs have been widely found in plants, animals, and microorganisms. MMPs are involved in regulating numerous physiological processes, pathological processes, and immune responses. In addition, MMPs play a key role in disease occurrence, including tumors, cardiovascular diseases, and other diseases. Compared with invertebrate MMPs, vertebrate MMPs have diverse subtypes and complex functions. Therefore, it is difficult to study the function of MMPs in vertebrates. However, it is relatively easy to study invertebrate MMPs because there are fewer subtypes of MMPs in invertebrates. In the present review, the structure and function of MMPs in invertebrates were summarized, which will provide a theoretical basis for investigating the regulatory mechanism of MMPs in invertebrates.


2016 ◽  
Vol 1 (3) ◽  
Author(s):  
Chih-Hung Chen ◽  
Ting-Ju Lin ◽  
Chih-Yu Chen

Based on the assumption that human behaviours are mainly affected by physical and animate environments, this empirical research takes the changeful and complex historical district in Tainan to observe wayfinding behaviours. An a priori analysis of the isovist fields is conducted to identify spatial characteristics. Three measures, the relative area, convexity, and circularity, are applied to scrutinize the possible stopping points, change of speed, and route choices. Accordingly, an experiment is carried out to observe spatial behaviours and different influences of social stimuli. Results show that social interactions afford groups and pairs to perform better than individual observers in wayfinding.© 2016. The Authors. Published for AMER ABRA by e-International Publishing House, Ltd., UK. Peer–review under responsibility of AMER (Association of Malaysian Environment-Behaviour Researchers), ABRA (Association of Behavioural Researchers on Asians) and cE-Bs (Centre for Environment-Behaviour Studies, Faculty of Architecture, Planning & Surveying, Universiti Teknologi MARA, MalaysiaKeywords: wayfinding; isovist; spatial perception and social stimuli; historic quarter


2019 ◽  
Vol 10 (1) ◽  
pp. 199-210 ◽  
Author(s):  
Chuanman Zhou ◽  
Jintao Luo ◽  
Xiaohui He ◽  
Qian Zhou ◽  
Yunxia He ◽  
...  

NALCN (Na+leak channel, non-selective) is a conserved, voltage-insensitive cation channel that regulates resting membrane potential and neuronal excitability. UNC79 and UNC80 are key regulators of the channel function. However, the behavioral effects of the channel complex are not entirely clear and the neurons in which the channel functions remain to be identified. In a forward genetic screen for C. elegans mutants with defective avoidance response to the plant hormone methyl salicylate (MeSa), we isolated multiple loss-of-function mutations in unc-80 and unc-79. C. elegans NALCN mutants exhibited similarly defective MeSa avoidance. Interestingly, NALCN, unc-80 and unc-79 mutants all showed wild type-like responses to other attractive or repelling odorants, suggesting that NALCN does not broadly affect odor detection or related forward and reversal behaviors. To understand in which neurons the channel functions, we determined the identities of a subset of unc-80-expressing neurons. We found that unc-79 and unc-80 are expressed and function in overlapping neurons, which verified previous assumptions. Neuron-specific transgene rescue and knockdown experiments suggest that the command interneurons AVA and AVE and the anterior guidepost neuron AVG can play a sufficient role in mediating unc-80 regulation of the MeSa avoidance. Though primarily based on genetic analyses, our results further imply that MeSa might activate NALCN by direct or indirect actions. Altogether, we provide an initial look into the key neurons in which the NALCN channel complex functions and identify a novel function of the channel in regulating C. elegans reversal behavior through command interneurons.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Teruyoshi Kobayashi ◽  
Mathieu Génois

AbstractDensification and sparsification of social networks are attributed to two fundamental mechanisms: a change in the population in the system, and/or a change in the chances that people in the system are connected. In theory, each of these mechanisms generates a distinctive type of densification scaling, but in reality both types are generally mixed. Here, we develop a Bayesian statistical method to identify the extent to which each of these mechanisms is at play at a given point in time, taking the mixed densification scaling as input. We apply the method to networks of face-to-face interactions of individuals and reveal that the main mechanism that causes densification and sparsification occasionally switches, the frequency of which depending on the social context. The proposed method uncovers an inherent regime-switching property of network dynamics, which will provide a new insight into the mechanics behind evolving social interactions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tun-Wei Hsu ◽  
Jong-Ling Fuh ◽  
Da-Wei Wang ◽  
Li-Fen Chen ◽  
Chia-Jung Chang ◽  
...  

AbstractDementia is related to the cellular accumulation of β-amyloid plaques, tau aggregates, or α-synuclein aggregates, or to neurotransmitter deficiencies in the dopaminergic and cholinergic pathways. Cellular and neurochemical changes are both involved in dementia pathology. However, the role of dopaminergic and cholinergic networks in metabolic connectivity at different stages of dementia remains unclear. The altered network organisation of the human brain characteristic of many neuropsychiatric and neurodegenerative disorders can be detected using persistent homology network (PHN) analysis and algebraic topology. We used 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) imaging data to construct dopaminergic and cholinergic metabolism networks, and used PHN analysis to track the evolution of these networks in patients with different stages of dementia. The sums of the network distances revealed significant differences between the network connectivity evident in the Alzheimer’s disease and mild cognitive impairment cohorts. A larger distance between brain regions can indicate poorer efficiency in the integration of information. PHN analysis revealed the structural properties of and changes in the dopaminergic and cholinergic metabolism networks in patients with different stages of dementia at a range of thresholds. This method was thus able to identify dysregulation of dopaminergic and cholinergic networks in the pathology of dementia.


2021 ◽  
Vol 12 (4) ◽  
Author(s):  
Peng Chen ◽  
Hongyang Jing ◽  
Mingtao Xiong ◽  
Qian Zhang ◽  
Dong Lin ◽  
...  

AbstractThe genes encoding for neuregulin1 (NRG1), a growth factor, and its receptor ErbB4 are both risk factors of major depression disorder and schizophrenia (SZ). They have been implicated in neural development and synaptic plasticity. However, exactly how NRG1 variations lead to SZ remains unclear. Indeed, NRG1 levels are increased in postmortem brain tissues of patients with brain disorders. Here, we studied the effects of high-level NRG1 on dendritic spine development and function. We showed that spine density in the prefrontal cortex and hippocampus was reduced in mice (ctoNrg1) that overexpressed NRG1 in neurons. The frequency of miniature excitatory postsynaptic currents (mEPSCs) was reduced in both brain regions of ctoNrg1 mice. High expression of NRG1 activated LIMK1 and increased cofilin phosphorylation in postsynaptic densities. Spine reduction was attenuated by inhibiting LIMK1 or blocking the NRG1–LIMK1 interaction, or by restoring NRG1 protein level. These results indicate that a normal NRG1 protein level is necessary for spine homeostasis and suggest a pathophysiological mechanism of abnormal spines in relevant brain disorders.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chao Gao ◽  
Chong Ma ◽  
Huqiang Wang ◽  
Haolin Zhong ◽  
Jiayin Zang ◽  
...  

AbstractInterestingly, some protein domains are intrinsically disordered (abbreviated as IDD), and the disorder degree of same domains may differ in different contexts. However, the evolutionary causes and biological significance of these phenomena are unclear. Here, we address these issues by genome-wide analyses of the evolutionary and functional features of IDDs in 1,870 species across the three superkingdoms. As the result, there is a significant positive correlation between the proportion of IDDs and organism complexity with some interesting exceptions. These phenomena may be due to the high disorder of clade-specific domains and the different disorder degrees of the domains shared in different clades. The functions of IDDs are clade-specific and the higher proportion of post-translational modification sites may contribute to their complex functions. Compared with metazoans, fungi have more IDDs with a consecutive disorder region but a low disorder ratio, which reflects their different functional requirements. As for disorder variation, it’s greater for domains among different proteins than those within the same proteins. Some clade-specific ‘no-variation’ or ‘high-variation’ domains are involved in clade-specific functions. In sum, intrinsic domain disorder is related to both the organism complexity and clade-specific functions. These results deepen the understanding of the evolution and function of IDDs.


Sign in / Sign up

Export Citation Format

Share Document