scholarly journals In Silico Investigations on Curcuminoids from Curcuma longa as Positive Regulators of Wnt/β-catenin Signaling Pathway in Wound Healing

2020 ◽  
Author(s):  
Riyan Al Islam Reshad ◽  
Sayka Alam ◽  
Humaira Binte Raihan ◽  
Kamrun Nahar Meem ◽  
Fatima Rahman ◽  
...  

AbstractCurcuma longa (Turmeric) is a traditionally used herb in wound healing. The efficacy of fresh Turmeric paste to heal wound has already been investigated in multiple ethnobotanical studies. Wnt/β-catenin signaling pathway plays a significant role in wound healing and injury repair processes which has been evident in different in vitro studies. This study aims to analyze the potentiality of Curcuminoids (Curcumin I, Curcumin II and Curcumin III) from Curcuma longa to bind and enhance the activity of two intracellular signaling proteins-Casein Kinase-1 (CK1) and Glycogen Synthase Kinase-3β (GSK3B) involved in Wnt/β-catenin signaling pathway. Present study is largely based on computer-based molecular docking program which mimics the in vivo condition and works on specific algorithm to interpret the binding affinity and poses of a ligand molecule to a receptor. Curcumin I showed better affinity of binding with CK1 (−10.31 Kcal/mol binding energy) and Curcumin II showed better binding affinity (−7.55 Kcal/mol binding energy) for GSK3B. Subsequently, Drug likeness property, ADME/Toxicity profile, Pharmacological activity and Site of metabolism of the Curcuminoids were also analyzed. All of the ligand molecules showed quite similar pharmacological properties.

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Riyan Al Islam Reshad ◽  
Sayka Alam ◽  
Humaira Binte Raihan ◽  
Kamrun Nahar Meem ◽  
Fatima Rahman ◽  
...  

Abstract Background Curcuma longa (Turmeric) is a traditionally used herb in wound healing. The efficacy of fresh turmeric paste to heal wounds has already been investigated in multiple ethnobotanical studies. Wnt/β-catenin signaling pathway plays a significant role in wound healing and injury repair processes which has been evident in different in vitro studies. This study aims to analyze the potentiality of curcuminoids (curcumin I, curcumin II and curcumin III) from Curcuma longa to bind and enhance the activity of two intracellular signaling proteins- casein kinase-1 (CK1) and glycogen synthase kinase-3β (GSK3B) involved in Wnt/β-catenin signaling pathway. This study is largely based on a computer-based molecular docking program which mimics the in vivo condition and works on a specific algorithm to interpret the binding affinity and poses of a ligand molecule to a receptor. Subsequently, drug likeness property, ADME/Toxicity profile, pharmacological activity, and site of metabolism of the curcuminoids were also analyzed. Results Curcumin I showed better affinity of binding with CK1 (− 10.31 Kcal/mol binding energy) and curcumin II showed better binding affinity (− 7.55 Kcal/mol binding energy) for GSK3B. All of the ligand molecules showed quite similar pharmacological properties. Conclusion Curcumin has anti-oxidant, anti-carcinogenic, anti-mutagenic, anti-coagulant, and anti-infective properties. Curcumin has also anti-inflammatory and wound healing properties. It hastens wound healing by acting on different stages of the natural wound healing process. In this study, three curcumins from Curcuma longa were utilized in this experiment in a search for a drug to be used in wound healing and injury repair processes. Hopefully, this study will raise research interest among researchers.


Biomedicines ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 21
Author(s):  
Rong-Fu Chen ◽  
Yun-Nan Lin ◽  
Keng-Fan Liu ◽  
Chun-Ting Wang ◽  
Savitha Ramachandran ◽  
...  

Previous studies have demonstrated that extracorporeal shock wave therapy (ESWT) could accelerate diabetic wound healing and that the inhibition of glycogen synthase kinase-3β (GSK-3β) is involved in epithelial differentiation during wound healing. This study investigated whether the enhancement of diabetic wound healing by ESWT is associated with the GSK-3β-mediated Wnt/β-catenin signaling pathway. A dorsal skin wounding defect model using streptozotocin-induced diabetic rodents was established. Rats were divided into 4 groups: group 1, normal controls without diabetes; group 2, diabetic controls without treatment; group 3, diabetic rats receiving ESWT; and group 4, rats receiving 6-bromoindirubin-3′oxime (BIO), a GSK-3β inhibitor, to trigger Wnt/β-catenin signaling. Tissue samples were collected and analyzed by immunohistochemical (IHC) staining and quantitative RT-PCR. The ESWT and BIO-treated groups both exhibited significant promotion of wound healing compared to the healing in controls without treatment. RT-PCR analysis of Wnt-1, -3a, -4, -5a, and -10 and β-catenin expression showed significantly increased expression in the ESWT group. The IHC staining showed that Wnt-3a and -5a and β-catenin levels were significantly increased in the ESWT and BIO treatment groups compared to the control groups. ESWT enhancement of diabetic wound healing is associated with modulation of the GSK-3β-mediated Wnt/β-catenin signaling pathway.


Author(s):  
Twinkle Bansode ◽  
B.K. Salalkar

Diabetes mellitus is the fifth deadliest disease in the developing countries. Even with all the research and new drugs available, combating diabetes is still challenging. There are successes in finding new cost effective drugs without side effects, even if not perfect. In our investigation we studied binding mechanism of secondary metabolite of T. chebula in silico. It was observed that three compounds out of 16 have a higher binding affinity for the target proteins. Ellagic acid showed highest binding affinity with alpha amylase, beta glucosidase and alpha glucosidase with lesser binding energies -4.5kcal/mol, -5.36kcal/mol and -4.48kcal/mol respectively. Arjungenin has lesser binding energy of 4.77 kcal/mol with glucokinase while luteoline has binding energy of -7.25kcal/mol for enzyme glycogen synthase kinase. These entire compounds interacted with non-covalent interaction. Petroleum ether extract showed the significant alpha amylase inhibitory activity i.e. 51.22% as compared to standard drug (65.99%).TLC analysis revealed the presence of total 9 compounds in different plant extracts one of them might be a lead compound which could be further exploited for the development of novel safer and potent antidiabetic drug.


Toxins ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 15 ◽  
Author(s):  
Jiajia Chang ◽  
Xiaoqin He ◽  
Jingmei Hu ◽  
Peter Muiruri Kamau ◽  
Ren Lai ◽  
...  

Prokineticins are highly conserved small peptides family expressed in all vertebrates, which contain a wide spectrum of functions. In this study, a prokineticin homolog (Bv8-AJ) isolated from the venom of frog Amolops jingdongensis was fully characterized. Bv8-AJ accelerated full-thickness wounds healing of mice model by promoting the initiation and the termination of inflammatory phase. Moreover, Bv8-AJ exerted strong proliferative effect on fibroblasts and keratinocytes isolated from newborn mice by activating interleukin (IL)-1 production. Our findings indicate that Bv8 is a potent wound healing regulator and may reveal the mechanism of rapid wound-healing in amphibian skins.


Author(s):  
Jingjing Cong ◽  
Bei Cheng ◽  
Jinyu Liu ◽  
Ping He

AbstractVascular calcification (VC) is highly prevailing in cardiovascular disease, diabetes mellitus, and chronic kidney disease and, when present, is associated with cardiovascular events and mortality. The osteogenic differentiation of vascular smooth muscle cells (VSMCs) is regarded as the foundation for mediating VC. Related transcriptional enhancer factor (RTEF-1), also named as transcriptional enhanced associate domain (TEAD) 4 or transcriptional enhancer factor-3 (TEF-3), is a nuclear transcriptional factor with a potent effect on cardiovascular diseases, apart from its oncogenic role in the canonical Hippo pathway. However, the role and mechanism of RTEF-1 in VC, particularly in calcification of VSMCs, are poorly understood. Our results showed that RTEF-1 was reduced in calcified VSMCs. RTEF-1 significantly ameliorated β-glycerophosphate (β-GP)-induced VSMCs calcification, as detected by alizarin red staining and calcium content assay. Also, RTEF-1 reduced alkaline phosphatase (ALP) activity and decreased expressions of osteoblast markers such as Osteocalcin and Runt-related transcription factor-2 (Runx2), but increased expression of contractile protein, including SM α-actin (α-SMA). Additionally, RTEF-1 inhibited β-GP-activated Wnt/β-catenin pathway which plays a critical role in calcification and osteogenic differentiation of VSMCs. Specifically, RTEF-1 reduced the levels of Wnt3a, p-β-catenin (Ser675), glycogen synthase kinase-3β (GSK-3β), and p-GSK-3β (Ser9), but increased the levels of p-β-catenin (Ser33/37). Also, RTEF-1 increased the ratio of p-β-catenin (Ser33/37) to β-catenin proteins and decreased the ratio of p-GSK-3β (Ser9) to GSK-3β protein. LiCl, a Wnt/β-catenin signaling activator, was observed to reverse the protective effect of RTEF-1 overexpression on VSMCs calcification induced by β-GP. Accordingly, Dickkopf-1 (Dkk1), a Wnt antagonist, attenuated the role of RTEF-1 deficiency in β-GP-induced VSMCs calcification. Taken together, we concluded that RTEF-1 ameliorated β-GP-induced calcification and osteoblastic differentiation of VSMCs by inhibiting Wnt/β-catenin signaling pathway.


2021 ◽  
Vol 22 (4) ◽  
pp. 1700
Author(s):  
Jihye Seo ◽  
Jain Ha ◽  
Eunjeong Kang ◽  
Haelim Yoon ◽  
Sewoong Lee ◽  
...  

Hepatocellular carcinoma (HCC), the most common type of liver cancer, is a leading cause of cancer-related deaths. As HCC has a high mortality rate and its incidence is increasing worldwide, understanding and treating HCC are crucial for resolving major public health concerns. In the present study, wound healing screening assays were performed using natural product libraries to identify natural chemicals that can inhibit cancer cell migration. Glaucarubinone (GCB) showed a high potential for inhibiting cell migration. The anti-cancer effects of GCB were evaluated using the HCC cell line, Huh7. GCB showed anti-cancer effects, as verified by wound healing, cell migration, invasion, colony formation, and three-dimensional spheroid invasion assays. In addition, cells treated with GCB showed suppressed matrix metalloproteinase activities. Immunoblotting analyses of intracellular signaling pathways revealed that GCB regulated the levels of Twist1, a crucial transcription factor associated with epithelial-to-mesenchymal transition, and mitogen-activated protein kinase. The invasive ability of cancer cells was found to be decreased by the regulation of Twist1 protein levels. Furthermore, GCB downregulated phosphorylation of extracellular signal-regulated kinase. These results indicate that GCB exhibits anti-metastatic properties in Huh7 cells, suggesting that it could be used to treat HCC.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Yan-Fang Xian ◽  
Zhi-Xiu Lin ◽  
Qing-Qiu Mao ◽  
Jian-Nan Chen ◽  
Zi-Ren Su ◽  
...  

The neurotoxicity of amyloid-β(Aβ) has been implicated as a critical cause of Alzheimer’s disease. Isorhynchophylline (IRN), an oxindole alkaloid isolated fromUncaria rhynchophylla,exerts neuroprotective effect againstAβ25–35-induced neurotoxicityin vitro. However, the exact mechanism for its neuroprotective effect is not well understood. The present study aimed to investigate the molecular mechanisms underlying the protective action of IRN againstAβ25–35-induced neurotoxicity in cultured rat pheochromocytoma (PC12) cells. Pretreatment with IRN significantly increased the cell viability, inhibited the release of lactate dehydrogenase and the extent of DNA fragmentation inAβ25–35-treated cells. IRN treatment was able to enhance the protein levels of phosphorylated Akt (p-Akt) and glycogen synthase kinase-3β(p-GSK-3β). Lithium chloride blockedAβ25–35-induced cellular apoptosis in a similar manner as IRN, suggesting that GSK-3βinhibition was involved in neuroprotective action of IRN. Pretreatment with LY294002 completely abolished the protective effects of IRN. Furthermore, IRN reversedAβ25–35-induced attenuation in the level of phosphorylated cyclic AMP response element binding protein (p-CREB) and the effect of IRN could be blocked by the PI3K inhibitor. These experimental findings unambiguously suggested that the protective effect of IRN againstAβ25–35-induced apoptosis in PC12 cells was associated with the enhancement of p-CREB expression via PI3K/Akt/GSK-3βsignaling pathway.


Sign in / Sign up

Export Citation Format

Share Document