scholarly journals Extracellular Vesicles Hijack the Autophagic Pathway to Induce Tau Accumulation in Endolysosomes

Author(s):  
Giona Pedrioli ◽  
Marialuisa Barberis ◽  
Maurizio Molinari ◽  
Diego Morone ◽  
Stéphanie Papin ◽  
...  

AbstractClinical progression of tauopathies is reflected by the transcellular propagation of pathogenic Tau seeds with the possible involvement of extracellular vesicles as transport vectors. However, the mechanism regulating extracellular vesicle cargo delivery to recipient cells is poorly understood. We established a cell model for investigating extracellular vesicle-delivery of membranes and proteins. In this model, extracellular vesicles are readily internalized and accumulate in endolysosomes. For the first time, we show that in this acidic compartment of recipient cells, extracellular vesicle-delivered Tau seeds cause the accumulation and abnormal folding of normal Tau by a process that requires the participation of autophagy. Endolysomes represent thus a cross-road where Tau seeds released from extracellular vesicles propagate on cellular Tau on its route for autophagy-mediated degradation, ultimately driving its accumulation, endolysosomal stress and cytotoxicity. Whilst, autophagy stimulation is considered as a viable solution to protect neurons from harmful cytosolic protein inclusions, our data suggest that this approach may favour the aberrant accumulation of neurodegeneration-associated proteins induced by exogenous pathogenic protein forms, with possible implications in the spreading of the disease.

2020 ◽  
Vol 5 (2) ◽  
pp. 201-209
Author(s):  
Christophe Savard ◽  
Pascal Venet ◽  
Eric Niel ◽  
Laurent Pietrac ◽  
Ali Sari

This paper shows the possible gain on time before the end of useful time brought by switches addition in a multicell battery. In a first time, it presents a battery electric model. A battery includes many identical electrical energy cells that electrically interact. From a behavioral standpoint, cell performance is measured by fundamental parameters: State of Charge (SoC) and State of Health (SoH). To simulate cell electrical behavior, the Thevenin model or the Nernst model are often used. However, these models do not take into account the cells aging or the possible interactions on aging. A cell ages mainly in two ways: cyclic and calendar. This aging impacts both the elements of the equivalent electrical model and the fundamental parameters (SoC and SoH). Thus, the conventional electric model of a cell does not accurately reflect the cell aging. In this paper, another formal model based on the fundamental curve that relates electrical and behavioral parameters is proposed. It integrates aging into the equivalent electric model estimation. In a second time, in order to validate this model, this cell model is used to simulate parallel-series association. To improve battery lifespan, in addition to the usual balancing techniques, it may be relevant to require some traditional reliability and operating safety solutions. This requires to add switches inside battery. The presented simulation shows adding switches solution is currently not deployed. This is justified in this paper by examining the impact provide on lifespan improvement on an example, which is pretty weak. But it also shows that however, by managing active cells in a different way, adding switches and spare cells can really reach this improvement.


Author(s):  
Kevin de Vries ◽  
Anna Nikishova ◽  
Benjamin Czaja ◽  
Gábor Závodszky ◽  
Alfons G. Hoekstra

2012 ◽  
Vol 51 (05) ◽  
pp. 179-185 ◽  
Author(s):  
M. Wendisch ◽  
D. Aurich ◽  
R. Runge ◽  
R. Freudenberg ◽  
J. Kotzerke ◽  
...  

SummaryTechnetium radiopharmaceuticals are well established in nuclear medicine. Besides its well-known gamma radiation, 99mTc emits an average of five Auger and internal conversion electrons per decay. The biological toxicity of these low-energy, high-LET (linear energy transfer) emissions is a controversial subject. One aim of this study was to estimate in a cell model how much 99mTc can be present in exposed cells and which radiobiological effects could be estimated in 99mTc-overloaded cells. Methods: Sodium iodine symporter (NIS)- positive thyroid cells were used. 99mTc-uptake studies were performed after preincubation with a non-radioactive (cold) stannous pyro - phosphate kit solution or as a standard 99mTc pyrophosphate kit preparation or with pure pertechnetate solution. Survival curves were analyzed from colony-forming assays. Results: Preincubation with stannous complexes causes irreversible intracellular radioactivity retention of 99mTc and is followed by further pertechnetate influx to an unexpectedly high 99mTc level. The uptake of 99mTc pertechnetate in NIS-positive cells can be modified using stannous pyrophosphate from 3–5% to >80%. The maximum possible cellular uptake of 99mTc was 90 Bq/cell. Compared with nearly pure extracellular irradiation from routine 99mTc complexes, cell survival was reduced by 3–4 orders of magnitude after preincubation with stannous pyrophosphate. Conclusions: Intra cellular 99mTc retention is related to reduced survival, which is most likely mediated by the emission of low-energy electrons. Our findings show that the described experiments constitute a simple and useful in vitro model for radiobiological investigations in a cell model.


2021 ◽  
Author(s):  
Shuwei Wang ◽  
Jiajia Wang ◽  
Tuoyu Ju ◽  
Kaige Qu ◽  
Fan Yang ◽  
...  

Extracellular Vesicles (EVs) secreted by cancer cells have a key role in the cancer microenvironment and progression. Previous studies have mainly focused on molecular functions, cellular components and biological processes...


2021 ◽  
Vol 10 (9) ◽  
Author(s):  
Balaji Krishnamachary ◽  
Christine Cook ◽  
Ashok Kumar ◽  
Leslie Spikes ◽  
Prabhakar Chalise ◽  
...  

2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A737-A737
Author(s):  
Loise Francisco-Anderson ◽  
Loise Francisco-Anderson ◽  
Mary Abdou ◽  
Michael Goldberg ◽  
Erin Troy ◽  
...  

BackgroundThe small intestinal axis (SINTAX) is a network of anatomic and functional connections between the small intestine and the rest of the body. It acts as an immunosurveillance system, integrating signals from the environment that affect physiological processes throughout the body. The impact of events in the gut in the control of tumor immunity is beginning to be appreciated. We have previously shown that an orally delivered single strain of commensal bacteria induces anti-tumor immunity preclinically via pattern recognition receptor-mediated activation of innate and adaptive immunity. Some bacteria produce extracellular vesicles (EVs) that share molecular content with the parent bacterium in a particle that is roughly 1/1000th the volume in a non-replicating form. We report here an orally-delivered and gut-restricted bacterial EV which potently attenuates tumor growth to a greater extent than whole bacteria or checkpoint inhibition.MethodsEDP1908 is a preparation of extracellular vesicles produced by a gram-stain negative strain of bacterium of the Oscillospiraceae family isolated from a human donor. EDP1908 was selected for its immunostimulatory profile in a screen of EVs from a range of distinct microbial strains. Its mechanism of action was determined by ex vivo analysis of the tumor microenvironment (TME) and by in vitro functional studies with murine and human cells.ResultsOral treatment of tumor-bearing mice with EDP1908 shows superior control of tumor growth compared to checkpoint inhibition (anti-PD-1) or an intact microbe. EDP1908 significantly increased the percentage of IFNγ and TNF producing CD8+ CTLs, NK cells, NKT cells and CD4+ cells in the tumor microenvironment (TME). EDP1908 also increased tumor-infiltrating dendritic cells (DC1 and DC2). Analysis of cytokines in the TME showed significant increases in IP-10 and IFNg production in mice treated with EDP1908, creating an environment conducive to the recruitment and activation of anti-tumor lymphocytes.ConclusionsThis is the first report of striking anti-tumor effects of an orally delivered microbial extracellular vesicle. These data point to oral EVs as a new class of immunotherapeutic drugs. They are particularly effective at harnessing the biology of the small intestinal axis, acting locally on host cells in the gut to control distal immune responses within the TME. EDP1908 is in preclinical development for the treatment of cancer.Ethics ApprovalPreclinical murine studies were conducted under the approval of the Avastus Preclinical Services’ Ethics Board. Human in vitro samples were attained by approval of the IntegReview Ethics Board; informed consent was obtained from all subjects.


2021 ◽  
pp. 135245852098754
Author(s):  
Gloria Dalla Costa ◽  
Tommaso Croese ◽  
Marco Pisa ◽  
Annamaria Finardi ◽  
Lorena Fabbella ◽  
...  

Background: Extracellular vesicles (EVs), a recently described mechanism of cell communication, are released from activated microglial cells and macrophages and are a candidate biomarker in diseases characterized by chronic inflammatory process such as multiple sclerosis (MS). Methods: We explored cerebrospinal fluid extracellular vesicle (CSF EV) of myeloid origin (MEVs), cytokine and chemokine levels in patients with clinically isolated syndrome (CIS). Results: We found that CSF MEVs were significantly higher in CIS patients than in controls and were inversely correlated to CSF CCL2 levels. MEVs level were significantly associated with an shorter time to evidence of disease activity (hazard ratio: 1.01, 95% confidence interval: 1.00–1.02, p < 0.01) independently from other known prognostic markers. Conclusion: After a first demyelinating event, CSF EVs may improve risk stratification of these patients and allow more targeted intervention strategies.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Xu Gao ◽  
Jingya Dai ◽  
Guifang Li ◽  
Xinya Dai

Abstract Objective In this work, we investigated the effects of gambogic acid (GA) on lipopolysaccharide (LPS)-induced apoptosis and inflammation in a cell model of neonatal pneumonia. Method Human WI-38 cells were maintained in vitro and incubated with various concentrations of GA to examine WI-38 survival. GA-preincubated WI-38 cells were then treated with LPS to investigate the protective effects of GA on LPS-induced death, apoptosis and inflammation. Western blot assay was utilized to analyze the effect of GA on tropomyosin receptor kinase A (TrkA) signaling pathway in LPS-treated WI-38 cells. In addition, human AKT serine/threonine kinase 1 (Akt) gene was knocked down in WI-38 cells to further investigate the associated genetic mechanisms of GA in protecting LPS-induced inflammation and apoptosis. Results Pre-incubating WI-38 cells with low and medium concentrations GA protected LPS-induced cell death, apoptosis and inflammatory protein productions of IL-6 and MCP-1. Using western blot assay, it was demonstrated that GA promoted TrkA phosphorylation and Akt activation in LPS-treated WI-38 cells. Knocking down Akt gene in WI-38 cells showed that GA-associated protections against LPS-induced apoptosis and inflammation were significantly reduced. Conclusions GA protected LPS-induced apoptosis and inflammation, possibly through the activations of TrkA and Akt signaling pathway. This work may broaden our understanding on the molecular mechanisms of human neonatal pneumonia.


Sign in / Sign up

Export Citation Format

Share Document