scholarly journals Sox9EGFP defines biliary epithelial heterogeneity downstream of Yap activity

2020 ◽  
Author(s):  
Deepthi Y Tulasi ◽  
Diego Martinez Castaneda ◽  
Kortney Wager ◽  
Karel P Alcedo ◽  
Jesse R Raab ◽  
...  

ABSTRACTIntrahepatic bile ducts are lined by biliary epithelial cells (BECs). However, defining the genetic heterogeneity of BECs remains challenging, and tools for identifying BEC subpopulations are limited. Here, we characterize Sox9EGFP transgene expression in the liver and demonstrate that GFP expression levels are associated with distinct cell types. BECs express “low” or “high” levels of GFP, while periportal hepatocytes express “sublow” GFP. Sox9EGFP distribution varies by duct size, with GFPhigh BECs found at greater numbers in smaller ducts. RNA-seq reveals distinct gene expression signatures for Sox9EGFP populations and enrichment of Notch and Yap signaling in GFPlow and GFPhigh BECs. All GFP+ populations are capable of forming organoids, but demonstrate interpopulation differences in organoid survival and size, dependent on media conditions. Organoids derived from Sox9EGFP populations also demonstrate differential activation of HNF4A protein in hepatocyte media conditions, suggesting variable potency in BEC subpopulations. We find that Yap signaling is required to maintain Sox9 expression in biliary organoids, and that bile acids are insufficient to induce Yap activity or Sox9 in vivo and in vitro. Our data demonstrate that Sox9EGFP levels provide a readout of Yap activity and delineate BEC heterogeneity, providing a tool for assaying subpopulation-specific cellular function in the liver.

Development ◽  
1989 ◽  
Vol 106 (4) ◽  
pp. 649-656 ◽  
Author(s):  
K. Fechtel ◽  
D.K. Fristrom ◽  
J.W. Fristrom

The components of the pupal cuticle are the main differentiation products synthesized by both the larval and adult epidermis during the prepupal period of Drosophila development. The pupal cuticle is formed in vitro by imaginal discs in response to a 6 h pulse of 20-hydroxyecdysone (20-HE). We previously described the isolation and initial characterization of four ecdysone-dependent genes (EDGs) whose expression in imaginal discs occurs only in response to a pulse of 20-HE. In this report, we demonstrate that the pattern of temporal and tissue-specific expression of these EDGs in vivo is like that expected for genes that encode pupal cuticle proteins. Transcripts of these genes are detected in prepupae only in the epidermis and only when cuticle components are synthesized and secreted. Nonetheless, their temporal and spatial patterns of accumulation differ. EDG-84A-1 transcripts accumulate only in prepupae and only in imaginal cells. EDG-78E and EDG-64CD transcripts accumulate at the same time in both larval and imaginal cells. EDG42-A transcripts appear first in prepupae in imaginal cells and then, after a 2–4 h lag, in larval cells. It is evident that some genes are not restricted in their expression to only larval or imaginal epidermis.


2006 ◽  
Vol 18 (2) ◽  
pp. 297
Author(s):  
H. Saito ◽  
H.-O. Kawano ◽  
M. Kurome ◽  
R. Tomii ◽  
S. Ueno ◽  
...  

Intracytoplasmic sperm injection (ICSI) of DNA-binding sperm produces transgenic offspring as effectively as pronuclear microinjection (PNM). A significant difference in these two methods is that DNA is introduced into MII oocytes during ICSI, which is likely to allow earlier gene integration compared to PNM. This leads us to hypothesize that ICSI reduces the chance of development of a mosaic embryo, a mixture of transgene-positive and -negative cells. To test this hypothesis, we compared expression patterns of the green flourescent protein (GFP) gene introduced by ICSI and PNM into murine and porcine oocytes. For ICSI, 2 to 5 × 105/μL of sperm frozen-thawed in CZB (for mice) or NIM (for pigs) were co-incubated with 2.5 ng/μL of transgene fragments (CAG-EGFP; 3 kb) for 5 min. Murine sperm were microinjected into in vivo-matured oocytes, and porcine sperm into in vitro-matured oocytes. PNM was performed by microinjection of several picoliters of the transgene fragments (10 ng/μL) into pronuclei of in vivo-fertilized oocytes for mice and in vitro-matured and -fertilized oocytes for pigs. ICSI and PNM embryos were cultured in vitro to the morula stage and treated with 0.5% pronase to remove the zona pellucida. These morulae were disassembled into individual blastomeres by pipetting into PBS containing 100 μM EDTA and examined for GFP expression under fluorescence microscopy. As shown in Table 1, the rate of mosaicism in GFP-expressing embryos was significantly lower for ICSI than for PNM (P < 0.01). In addition, GFP-expressing ICSI embryos were likely to contain high percentages, 81 to 100%, of GFP-positive cells, whereas GFP-expressing PNM embryos were significantly less likely to contain such high percentages of GFP-positive cells (P < 0.01). From these results, we conclude that transgenesis by ICSI was less likely to produce mosaic embryos, and that produced transgenic embryos contained higher proportions of transgene-positive cells, although genomic integration remains to be determined. Table 1. Transgene expression by ICSI and pronuclear microinjection in murine and porcine embryos This work was supported by PROBRAIN.


2015 ◽  
Vol 9 ◽  
pp. BBI.S33124 ◽  
Author(s):  
Peter R. LoVerso ◽  
Christopher M. Wachter ◽  
Feng Cui

The mammalian brain is characterized by distinct classes of cells that differ in morphology, structure, signaling, and function. Dysregulation of gene expression in these cell populations leads to various neurological disorders. Neural cells often need to be acutely purified from animal brains for research, which requires complicated procedure and specific expertise. Primary culture of these cells in vitro is a viable alternative, but the differences in gene expression of cells grown in vitro and in vivo remain unclear. Here, we cultured three major neural cell classes of rat brain (ie, neurons, astrocytes, and oligodendrocyte precursor cells [OPCs]) obtained from commercial sources. We measured transcript abundance of these cell types by RNA sequencing (RNA-seq) and compared with their counterparts acutely purified from mouse brains. Cross-species RNA-seq data analysis revealed hundreds of genes that are differentially expressed between the cultured and acutely purified cells. Astrocytes have more such genes compared to neurons and OPCs, indicating that signaling pathways are greatly perturbed in cultured astrocytes. This dataset provides a powerful resource to demonstrate the similarities and differences of biological processes in mammalian neural cells grown in vitro and in vivo at the molecular level.


2001 ◽  
Vol 281 (3) ◽  
pp. G612-G625 ◽  
Author(s):  
Noriatsu Kanno ◽  
Gene LeSage ◽  
Shannon Glaser ◽  
Gianfranco Alpini

The objective of this review article is to discuss the role of secretin and its receptor in the regulation of the secretory activity of intrahepatic bile duct epithelial cells (i.e., cholangiocytes). After a brief overview of cholangiocyte functions, we provide an historical background for the role of secretin and its receptor in the regulation of ductal secretion. We review the newly developed experimental in vivo and in vitro tools, which lead to understanding of the mechanisms of secretin regulation of cholangiocyte functions. After a description of the intracellular mechanisms by which secretin stimulates ductal secretion, we discuss the heterogeneous responses of different-sized intrahepatic bile ducts to gastrointestinal hormones. Furthermore, we outline the role of a number of cooperative factors (e.g., nerves, alkaline phosphatase, gastrointestinal hormones, neuropeptides, and bile acids) in the regulation of secretin-stimulated ductal secretion. Finally, we discuss other factors that may also play an important role in the regulation of secretin-stimulated ductal secretion.


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi268-vi268
Author(s):  
Phuong Nguyen ◽  
Fadi Jacob ◽  
Ryan Salinas ◽  
Daniel Zhang ◽  
Hongjun Song ◽  
...  

Abstract Glioblastoma multiforme (GBM) is the most common primary and aggressive brain tumors in adults with extremely poor prognosis and limited treatment options. A major hallmark of GBM is the rapid and diffused infiltration of tumor cells into the surrounding healthy tissue that contribute to tumor recurrence and therapeutic resistance. However, existing in vitro cell culture or in vivo xenograft models inadequately recapitulate the inter-tumoral and intra-tumoral heterogeneity which are key features of GBM. For example, common oncogenic drivers of GBM such as epidermal growth factor receptor (EGFR) amplification and EGFRvIII mutation do not persist in traditional in vitro models due to selection pressures, thus requires exogenous overexpression. Alternatively, EGFR statuses can be maintained in xenografted mice, but implantation of the primary GBM cells into the flank is required to first establish the tumor prior to secondary injection into the brains. Recently, we have established a novel protocol for culturing GBM tissue as organoids (GBOs) directly from patient tumor resection that retain many distinct cell populations in vitro with high fidelity evidenced by histological, whole-exome, bulk and single cell RNA analyses. Compared to prolonged generation time of previously established in vitro and xenograft models, our methodology is robust for generating GBOs within 1–2 weeks from initial resection. In addition, these GBOs can be readily xenografted into the adult mouse brains as an intact organoid, exhibit rapid and aggressive infiltration phenotypes, and maintains driver mutation EGFRviii within as little as one month. Consequently, they can be used to test in vivo treatment efficacies in a timely fashion. The presence of diverse cell types in this GBO model offers a promising platform for not only understanding of tumor biology, but also more strategic development of new therapies.


Author(s):  
Fay Cooper ◽  
Anestis Tsakiridis

The neural crest (NC) is a multipotent cell population which can give rise to a vast array of derivatives including neurons and glia of the peripheral nervous system, cartilage, cardiac smooth muscle, melanocytes and sympathoadrenal cells. An attractive strategy to model human NC development and associated birth defects as well as produce clinically relevant cell populations for regenerative medicine applications involves the in vitro generation of NC from human pluripotent stem cells (hPSCs). However, in vivo, the potential of NC cells to generate distinct cell types is determined by their position along the anteroposterior (A–P) axis and, therefore the axial identity of hPSC-derived NC cells is an important aspect to consider. Recent advances in understanding the developmental origins of NC and the signalling pathways involved in its specification have aided the in vitro generation of human NC cells which are representative of various A–P positions. Here, we explore recent advances in methodologies of in vitro NC specification and axis patterning using hPSCs.


Author(s):  
D.J.P. Ferguson ◽  
A.R. Berendt ◽  
J. Tansey ◽  
K. Marsh ◽  
C.I. Newbold

In human malaria, the most serious clinical manifestation is cerebral malaria (CM) due to infection with Plasmodium falciparum. The pathology of CM is thought to relate to the fact that red blood cells containing mature forms of the parasite (PRBC) cytoadhere or sequester to post capillary venules of various tissues including the brain. This in vivo phenomenon has been studied in vitro by examining the cytoadherence of PRBCs to various cell types and purified proteins. To date, three Ijiost receptor molecules have been identified; CD36, ICAM-1 and thrombospondin. The specific changes in the PRBC membrane which mediate cytoadherence are less well understood, but they include the sub-membranous deposition of electron-dense material resulting in surface deformations called knobs. Knobs were thought to be essential for cytoadherence, lput recent work has shown that certain knob-negative (K-) lines can cytoadhere. In the present study, we have used electron microscopy to re-examine the interactions between K+ PRBCs and both C32 amelanotic melanoma cells and human umbilical vein endothelial cells (HUVEC).We confirm previous data demonstrating that C32 cells possess numerous microvilli which adhere to the PRBC, mainly via the knobs (Fig. 1). In contrast, the HUVEC were relatively smooth and the PRBCs appeared partially flattened onto the cell surface (Fig. 2). Furthermore, many of the PRBCs exhibited an invagination of the limiting membrane in the attachment zone, often containing a cytoplasmic process from the endothelial cell (Fig. 2).


2018 ◽  
Vol 18 (4) ◽  
pp. 246-255 ◽  
Author(s):  
Lara Termini ◽  
Enrique Boccardo

In vitro culture of primary or established cell lines is one of the leading techniques in many areas of basic biological research. The use of pure or highly enriched cultures of specific cell types obtained from different tissues and genetics backgrounds has greatly contributed to our current understanding of normal and pathological cellular processes. Cells in culture are easily propagated generating an almost endless source of material for experimentation. Besides, they can be manipulated to achieve gene silencing, gene overexpression and genome editing turning possible the dissection of specific gene functions and signaling pathways. However, monolayer and suspension cultures of cells do not reproduce the cell type diversity, cell-cell contacts, cell-matrix interactions and differentiation pathways typical of the three-dimensional environment of tissues and organs from where they were originated. Therefore, different experimental animal models have been developed and applied to address these and other complex issues in vivo. However, these systems are costly and time consuming. Most importantly the use of animals in scientific research poses moral and ethical concerns facing a steadily increasing opposition from different sectors of the society. Therefore, there is an urgent need for the development of alternative in vitro experimental models that accurately reproduce the events observed in vivo to reduce the use of animals. Organotypic cultures combine the flexibility of traditional culture systems with the possibility of culturing different cell types in a 3D environment that reproduces both the structure and the physiology of the parental organ. Here we present a summarized description of the use of epithelial organotypic for the study of skin physiology, human papillomavirus biology and associated tumorigenesis.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Shuiyan Wu ◽  
You Jiang ◽  
Yi Hong ◽  
Xinran Chu ◽  
Zimu Zhang ◽  
...  

Abstract Background T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive disease with a high risk of induction failure and poor outcomes, with relapse due to drug resistance. Recent studies show that bromodomains and extra-terminal (BET) protein inhibitors are promising anti-cancer agents. ARV-825, comprising a BET inhibitor conjugated with cereblon ligand, was recently developed to attenuate the growth of multiple tumors in vitro and in vivo. However, the functional and molecular mechanisms of ARV-825 in T-ALL remain unclear. This study aimed to investigate the therapeutic efficacy and potential mechanism of ARV-825 in T-ALL. Methods Expression of the BRD4 were determined in pediatric T-ALL samples and differential gene expression after ARV-825 treatment was explored by RNA-seq and quantitative reverse transcription-polymerase chain reaction. T-ALL cell viability was measured by CCK8 assay after ARV-825 administration. Cell cycle was analyzed by propidium iodide (PI) staining and apoptosis was assessed by Annexin V/PI staining. BRD4, BRD3 and BRD2 proteins were detected by western blot in cells treated with ARV-825. The effect of ARV-825 on T-ALL cells was analyzed in vivo. The functional and molecular pathways involved in ARV-825 treatment of T-ALL were verified by western blot and chromatin immunoprecipitation (ChIP). Results BRD4 expression was higher in pediatric T-ALL samples compared with T-cells from healthy donors. High BRD4 expression indicated a poor outcome. ARV-825 suppressed cell proliferation in vitro by arresting the cell cycle and inducing apoptosis, with elevated poly-ADP ribose polymerase and cleaved caspase 3. BRD4, BRD3, and BRD2 were degraded in line with reduced cereblon expression in T-ALL cells. ARV-825 had a lower IC50 in T-ALL cells compared with JQ1, dBET1 and OTX015. ARV-825 perturbed the H3K27Ac-Myc pathway and reduced c-Myc protein levels in T-ALL cells according to RNA-seq and ChIP. In the T-ALL xenograft model, ARV-825 significantly reduced tumor growth and led to the dysregulation of Ki67 and cleaved caspase 3. Moreover, ARV-825 inhibited cell proliferation by depleting BET and c-Myc proteins in vitro and in vivo. Conclusions BRD4 indicates a poor prognosis in T-ALL. The BRD4 degrader ARV-825 can effectively suppress the proliferation and promote apoptosis of T-ALL cells via BET protein depletion and c-Myc inhibition, thus providing a new strategy for the treatment of T-ALL.


2021 ◽  
Vol 22 (4) ◽  
pp. 1514 ◽  
Author(s):  
Akihiro Yachie

Since Yachie et al. reported the first description of human heme oxygenase (HO)-1 deficiency more than 20 years ago, few additional human cases have been reported in the literature. A detailed analysis of the first human case of HO-1 deficiency revealed that HO-1 is involved in the protection of multiple tissues and organs from oxidative stress and excessive inflammatory reactions, through the release of multiple molecules with anti-oxidative stress and anti-inflammatory functions. HO-1 production is induced in vivo within selected cell types, including renal tubular epithelium, hepatic Kupffer cells, vascular endothelium, and monocytes/macrophages, suggesting that HO-1 plays critical roles in these cells. In vivo and in vitro studies have indicated that impaired HO-1 production results in progressive monocyte dysfunction, unregulated macrophage activation and endothelial cell dysfunction, leading to catastrophic systemic inflammatory response syndrome. Data from reported human cases of HO-1 deficiency and numerous studies using animal models suggest that HO-1 plays critical roles in various clinical settings involving excessive oxidative stress and inflammation. In this regard, therapy to induce HO-1 production by pharmacological intervention represents a promising novel strategy to control inflammatory diseases.


Sign in / Sign up

Export Citation Format

Share Document