scholarly journals B cells and HSV-specific antibodies respond to HSV-2 reactivation in skin

2020 ◽  
Author(s):  
Emily S. Ford ◽  
Anton M. Sholukh ◽  
RuthMabel Boytz ◽  
Savanna S. Carmack ◽  
Alexis Klock ◽  
...  

AbstractTissue-based T cells increasingly have been shown to be important effectors in the control and prevention of mucosal viral infections – less is known about tissue-based B cells. We demonstrate that B cells and antibody-secreting cells (ASCs) are present in skin biopsies of persons with symptomatic HSV-2 reactivation. CD20+ B cells are observed in inflammatory infiltrates at greatest density at the time of symptomatic reactivation; HSV-2-specific antibodies to HSV-2 surface antigens are also detected. The concentrations of HSV-2-specific antibodies in tissue biopsies vary over the course of HSV-2 reactivation and healing, unlike serum where concentrations remain static over time. B cells and HSV-specific antibody were rarely present in biopsies of unaffected skin. Investigation of serial biopsies over the course of lesion healing suggests that B cells follow a more migratory than resident pattern of infiltration in HSV-affected genital skin, in contrast to T cells. Together, these observations may suggest a functional and distinct role of tissue-based B cells in the local immune response to HSV-2.

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 1554-1554
Author(s):  
Yongwei Zheng ◽  
Mei Yu ◽  
Anand Padmanabhan ◽  
Richard H. Aster ◽  
Renren Wen ◽  
...  

Abstract Heparin-induced thrombocytopenia (HIT) is an antibody-mediated disorder that can cause arterial or venous thrombosis/thromboembolism, and platelet factor 4 (PF4)/ heparin-reactive antibodies are essential to the pathogenesis of HIT. Our recent studies have demonstrated that marginal zone (MZ) B cells play a major role in production of PF4/heparin-specific antibodies. However, the role of T cells in production of these pathogenic antibodies is not clear. Here we showed that PF4/heparin complex-induced production of PF4/heparin-specific antibodies was markedly impaired in mice, in which CD4 T cells were depleted by administration of GK1.5 anti-CD4 monoclonal antibody. As expected, the CD4 T cell-depleted mice responded normally to T cell-independent antigen TNP-Ficoll but not T cell-dependent antigen NP-CGG, in agreement with the lack of CD4 T cells in these GK1.5-treated mice. Further, following adoptive transfer of a mixture of wild-type splenic B cells and splenocytes from B cell-deficient μMT mice, T and B cell-deficient Rag1 knockout mice responded to PF4/heparin complex challenge to produce PF4/heparin-specific antibodies. In contrast, Rag1-deficient mice that received a mixture of wild-type splenic B cells and splenocytes from Rag1-deficient mice barely produced PF4/heparin-specific antibodies upon PF4/heparin complex challenge. These data suggest that T cells are required for production of PF4/heparin-specific antibodies. Consistent with this concept, mice with B cells lacking CD40 molecule, a B cell costimulatory molecule that helps T cell-dependent B cell responses, displayed a marked reduction of PF4/heparin-specific antibody production following PF4/heparin complex challenge. Also as expected, mice with CD40-deficient B cells were able to respond to T cell-independent antigen TNP-Ficoll but not T cell-dependent antigen NP-CGG, consistent with the lack of T-cell help in these mice. Taken together, these findings demonstrate that T cells play an essential role in production of PF4/heparin-specific antibodies by MZ B cells. Disclosures No relevant conflicts of interest to declare.


Author(s):  
Christopher J. Tyler ◽  
Mauricio Guzman ◽  
Luke R. Lundborg ◽  
Shaila Yeasmin ◽  
Nadia Zgajnar ◽  
...  

AbstractT and B cells employ integrin α4β7 to migrate to intestine under homeostatic conditions. Whether those cells differentially rely on α4β7 for homing during inflammatory conditions has not been fully examined. This may have implications for our understanding of the mode of action of anti-integrin therapies in inflammatory bowel disease (IBD). Here, we examined the role of α4β7 integrin during chronic colitis using IL-10−/− mice, β7-deficient IL-10−/−, IgA-deficient IL-10−/− mice, and antibody blockade of MAdCAM-1. We found that α4β7 was predominantly expressed by B cells. β7 deficiency and MAdCAM-1 blockade specifically depleted antibody secreting cells (ASC) (not T cells) from the colonic LP, leading to a fecal pan-immunoglobulin deficit, severe colitis, and alterations of microbiota composition. Colitis was not due to defective regulation, as dendritic cells (DC), regulatory T cells, retinaldehyde dehydrogenase (RALDH) expression, activity, and regulatory T/B-cell cytokines were all comparable between the strains/treatment. Finally, an IgA deficit closely recapitulated the clinical phenotype and altered microbiota composition of β7-deficient IL-10−/− mice. Thus, a luminal IgA deficit contributes to accelerated colitis in the β7-deficient state. Given the critical/nonredundant dependence of IgA ASC on α4β7:MAdCAM-1 for intestinal homing, B cells may represent unappreciated targets of anti-integrin therapies.


2013 ◽  
Vol 82 (1) ◽  
pp. 286-297 ◽  
Author(s):  
Wathsala Wijayalath ◽  
Rebecca Danner ◽  
Yuliya Kleschenko ◽  
Sai Majji ◽  
Eileen Franke Villasante ◽  
...  

ABSTRACTUnlike human malaria parasites that induce persistent infection, some rodent malaria parasites, likePlasmodium yoeliistrain 17XNL (Py17XNL), induce a transient (self-curing) malaria infection. Cooperation between CD4 T cells and B cells to produce antibodies is thought to be critical for clearance of Py17XNL parasites from the blood, with major histocompatibility complex (MHC) class II molecules being required for activation of CD4 T cells. In order to better understand the correspondence between murine malaria models and human malaria, and in particular the role of MHC (HLA) class II molecules, we studied the ability of humanized mice expressing human HLA class II molecules to clear Py17XNL infection. We showed that humanized mice expressing HLA-DR4 (DR0401) molecules and lacking mouse MHC class II molecules (EA0) have impaired production of specific antibodies to Py17XNL and cannot cure the infection. In contrast, mice expressing HLA-DR4 (DR0402), HLA-DQ6 (DQ0601), HLA-DQ8 (DQ0302), or HLA-DR3 (DR0301) molecules in an EA0background were able to elicit specific antibodies and self-cure the infection. In a series of experiments, we determined that the inability of humanized DR0401.EA0mice to elicit specific antibodies was due to expansion and activation of regulatory CD4+Foxp3+T cells (Tregs) that suppressed B cells to secrete antibodies through cell-cell interactions. Treg depletion allowed the DR0401.EA0mice to elicit specific antibodies and self-cure the infection. Our results demonstrated a differential role of MHC (HLA) class II molecules in supporting antibody responses to Py17XNL malaria and revealed a new mechanism by which malaria parasites stimulate B cell-suppressogenic Tregs that prevent clearance of infection.


1991 ◽  
Vol 173 (6) ◽  
pp. 1433-1439 ◽  
Author(s):  
R H Lin ◽  
M J Mamula ◽  
J A Hardin ◽  
C A Janeway

A novel mechanism for breaking T cell self tolerance is described. B cells induced to make autoantibody by immunization of mice with the non-self protein human cytochrome c can present the self protein mouse cytochrome c to autoreactive T cells in immunogenic form. This mechanism of breaking T cell self tolerance could account for the role of foreign antigens in breaking not only B cell but also T cell self tolerance, leading to sustained autoantibody production in the absence of the foreign antigen.


2008 ◽  
Vol 32 (4) ◽  
pp. 287-293 ◽  
Author(s):  
Michele Bolan ◽  
Daniele de Almeida Lima ◽  
Cláudia Pinto Figueiredo ◽  
Gabriella Di Giunta ◽  
Maria José de Carvalho Rocha

BACKGROUND: The periapical lesion is the result of a local inflammatory reaction caused by bacteria and its products present on the root canal. The interaction between inflammatory cells and bacteria elicit both specific and non-specific immune responses. OBJETIVE: Due to the lack of studies evaluating the role of the immune system in periapical lesions of primary teeth and considering the potentially systemic effects that these infections can cause in children, especially because of the immaturity of their immune system, we sought to evaluate the presence of T cells, B cells and macrophages on periradicular lesions in primary teeth. STUDY DESIGN: 14 periradicular lesions were analyzed. The immunohistochemistry technique was performed using CD45RO, CD20, CD68 monoclonal antibodies aiming to identify T cells, B cells and macrophages, respectively. Cells were quantified by microscopic analysis of histological sections. RESULTS: Mean percentage of positive cells CD45RO was 11.76; CD20 was 5.25; CD68 was 10.92. Our results showed that T and B cells and macrophages comprise the majority of the inflammatory infiltrate. CONCLUSION: We concluded that both humoral and cell mediated immune reactions take place in periradicular lesions of primary teeth. The immune system plays an important role on the periradicular inflammatory processes in primary teeth.


2022 ◽  
Vol 11 (1) ◽  
pp. 270
Author(s):  
Martina Hinterleitner ◽  
Clemens Hinterleitner ◽  
Elke Malenke ◽  
Birgit Federmann ◽  
Ursula Holzer ◽  
...  

Immune cell reconstitution after stem cell transplantation is allocated over several stages. Whereas cells mediating innate immunity recover rapidly, adaptive immune cells, including T and B cells, recover slowly over several months. In this study we investigated kinetics and reconstitution of de novo B cell formation in patients receiving CD3 and CD19 depleted haploidentical stem cell transplantation with additional in vivo T cell depletion with monoclonal anti-CD3 antibody. This model enables a detailed in vivo evaluation of hierarchy and attribution of defined lymphocyte populations without skewing by mTOR- or NFAT-inhibitors. As expected CD3+ T cells and their subsets had delayed reconstitution (<100 cells/μL at day +90). Well defined CD19+ B lymphocytes of naïve and memory phenotype were detected at day +60. Remarkably, we observed a very early reconstitution of antibody-secreting cells (ASC) at day +14. These ASC carried the HLA-haplotype of the donor and secreted the isotypes IgM and IgA more prevalent than IgG. They correlated with a population of CD19− CD27− CD38low/+ CD138− cells. Of note, reconstitution of this ASC occurred without detectable circulating T cells and before increase of BAFF or other B cell stimulating factors. In summary, we describe a rapid reconstitution of peripheral blood ASC after CD3 and CD19 depleted haploidentical stem cell transplantation, far preceding detection of naïve and memory type B cells. Incidence before T cell reconstitution and spontaneous secretion of immunoglobulins allocate these early ASC to innate immunity, eventually maintaining natural antibody levels.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Fei Fei Guo ◽  
Jiu Wei Cui

Earlier studies on elucidating the role of lymphocytes in tumor immunity predominantly focused on T cells. However, the role of B cells in tumor immunity has increasingly received better attention in recent studies. The B cells that infiltrate tumor tissues are called tumor-infiltrating B cells (TIBs). It is found that TIBs play a multifaceted dual role in regulating tumor immunity rather than just tumor inhibition or promotion. In this article, latest research advances focusing on the relationship between TIBs and tumor complexity are reviewed, and light is shed on some novel ideas for exploiting TIBs as a possible tumor biomarker and potential therapeutic target against tumors.


Cells ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 820 ◽  
Author(s):  
Ryan D. Pardy ◽  
Martin J. Richer

CD4 and CD8 T cells are an important part of the host’s capacity to defend itself against viral infections. During flavivirus infections, T cells have been implicated in both protective and pathogenic responses. Given the recent emergence of Zika virus (ZIKV) as a prominent global health threat, the question remains as to how T cells contribute to anti-ZIKV immunity. Furthermore, high homology between ZIKV and other, co-circulating flaviviruses opens the possibility of positive or negative effects of cross-reactivity due to pre-existing immunity. In this review, we will discuss the CD4 and CD8 T cell responses to ZIKV, and the lessons we have learned from both mouse and human infections. In addition, we will consider the possibility of whether T cells, in the context of flavivirus-naïve and flavivirus-immune subjects, play a role in promoting ZIKV pathogenesis during infection.


2018 ◽  
Vol 115 (41) ◽  
pp. E9630-E9639 ◽  
Author(s):  
Virginia Andreani ◽  
Senthilkumar Ramamoorthy ◽  
Abhinav Pandey ◽  
Ekaterina Lupar ◽  
Stephen L. Nutt ◽  
...  

Plasma cell differentiation involves coordinated changes in gene expression and functional properties of B cells. Here, we study the role of Mzb1, a Grp94 cochaperone that is expressed in marginal zone (MZ) B cells and during the terminal differentiation of B cells to antibody-secreting cells. By analyzing Mzb1−/−Prdm1+/gfp mice, we find that Mzb1 is specifically required for the differentiation and function of antibody-secreting cells in a T cell-independent immune response. We find that Mzb1-deficiency mimics, in part, the phenotype of Blimp1 deficiency, including the impaired secretion of IgM and the deregulation of Blimp1 target genes. In addition, we find that Mzb1−/− plasmablasts show a reduced activation of β1-integrin, which contributes to the impaired plasmablast differentiation and migration of antibody-secreting cells to the bone marrow. Thus, Mzb1 function is required for multiple aspects of plasma cell differentiation.


Sign in / Sign up

Export Citation Format

Share Document