scholarly journals THE MATRIX IS EVERYWHERE: CACO3 BIOMINERALIZATION BY THE BACILLUS LICHENIFORMIS PLANKTONIC CELLS

2020 ◽  
Author(s):  
Lyubov A. Ivanova ◽  
Darya A. Golovkina ◽  
Elena V. Zhurishkina ◽  
Yuri P. Garmay ◽  
Alexander Ye. Baranchikov ◽  
...  

ABSTRACTTo date, the mechanisms of CaCO3 nucleus formation and crystal growth induced by bacterial cells still remain debatable. Here, an insight on the role of planktonic cells of Bacillus licheniformis DSMZ 8782 in the biomineralization is presented. We showed that during 14-days bacterial growth in a liquid urea/Ca2+-containing medium the transformation of CaCO3 polymorphs followed the classical pathway “ACC-vaterite-calcite/aragonite”. By microscopic techniques, we detected the formation of extracellular matrix (ECM) around the cells at the stage of exponential growth and appearance of electron-dense inclusions at 24 h after the inoculation. The cells formed filaments and created a network, the nodes of which served as sites for further crystal growth. The ECM formation accompanied with the expression of proteins required for biofilm formation, the aldehyde/alcohol dehydrogenase, stress-associated Clp family proteins, and a porin family protein (ompA ortholog) associated with bacterial extracellular vesicles. We demonstrated that urea and CaCl2 acted as denaturing agents causing matrix formation in addition to their traditional role as a source of carbonate and Ca2+ ions. We showed that CaCO3 nucleation occured inside B. licheniformis cells and further crystal growth and polymorphic transformations took place in the extracellular matrix without attaching to the cell surface. The spatial arrangement of the cells was important for the active crystal growth and dependent on environmental factors. The extracellular matrix played a double role being formed as a stress response and providing a favorable microenvironment for biomineralization (a high concentration of ions necessary for CaCO3 crystal aggregation, fixation and stabilization).

2020 ◽  
Vol 21 (4) ◽  
pp. 270-286 ◽  
Author(s):  
Fazlurrahman Khan ◽  
Dung T.N. Pham ◽  
Sandra F. Oloketuyi ◽  
Young-Mog Kim

Background: The establishment of a biofilm by most pathogenic bacteria has been known as one of the resistance mechanisms against antibiotics. A biofilm is a structural component where the bacterial community adheres to the biotic or abiotic surfaces by the help of Extracellular Polymeric Substances (EPS) produced by bacterial cells. The biofilm matrix possesses the ability to resist several adverse environmental factors, including the effect of antibiotics. Therefore, the resistance of bacterial biofilm-forming cells could be increased up to 1000 times than the planktonic cells, hence requiring a significantly high concentration of antibiotics for treatment. Methods: Up to the present, several methodologies employing antibiotics as an anti-biofilm, antivirulence or quorum quenching agent have been developed for biofilm inhibition and eradication of a pre-formed mature biofilm. Results: Among the anti-biofilm strategies being tested, the sub-minimal inhibitory concentration of several antibiotics either alone or in combination has been shown to inhibit biofilm formation and down-regulate the production of virulence factors. The combinatorial strategies include (1) combination of multiple antibiotics, (2) combination of antibiotics with non-antibiotic agents and (3) loading of antibiotics onto a carrier. Conclusion: The present review paper describes the role of several antibiotics as biofilm inhibitors and also the alternative strategies adopted for applications in eradicating and inhibiting the formation of biofilm by pathogenic bacteria.


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1738
Author(s):  
Saeid Vafaei ◽  
Alexander Wolosz ◽  
Catlin Ethridge ◽  
Udo Schnupf ◽  
Nagisa Hattori ◽  
...  

SnO2 nanoparticles are regarded as attractive, functional materials because of their versatile applications. SnO2 nanoaggregates with single-nanometer-scale lumpy surfaces provide opportunities to enhance hetero-material interfacial areas, leading to the performance improvement of materials and devices. For the first time, we demonstrate that SnO2 nanoaggregates with oxygen vacancies can be produced by a simple, low-temperature sol-gel approach combined with freeze-drying. We characterize the initiation of the low-temperature crystal growth of the obtained SnO2 nanoaggregates using high-resolution transmission electron microscopy (HRTEM). The results indicate that Sn (II) hydroxide precursors are converted into submicrometer-scale nanoaggregates consisting of uniform SnO2 spherical nanocrystals (2~5 nm in size). As the sol-gel reaction time increases, further crystallization is observed through the neighboring particles in a confined part of the aggregates, while the specific surface areas of the SnO2 samples increase concomitantly. In addition, X-ray photoelectron spectroscopy (XPS) measurements suggest that Sn (II) ions exist in the SnO2 samples when the reactions are stopped after a short time or when a relatively high concentration of Sn (II) is involved in the corresponding sol-gel reactions. Understanding this low-temperature growth of 3D SnO2 will provide new avenues for developing and producing high-performance, photofunctional nanomaterials via a cost-effective and scalable method.


1992 ◽  
Vol 26 (5-6) ◽  
pp. 1047-1055 ◽  
Author(s):  
N. F. Y. Tam ◽  
Y. S. Wong ◽  
G. Leung

Laboratory-scale studies were undertaken to examine the effects of easily-biodegradable organic substances upon the nutrient removal by a simulated sequencing batch reactor (SBR). The fill and react period of the SBR was 14 hours, including an instant fill, 7 hours aeration, 4 hours anoxic and 3 hours aeration period. Three kinds of commonly used carbon sources, namely methanol, glucose and sodium acetate, at the concentrations equivalent to theoretical COD values of 50, 100 and 150 mg O2 l-1 were added to each reactor prior to the anoxic stage. The results showed that the concentration of NH4+-N dropped from its initial 50 to 18 mg l-1 (64 % removal) during the first aeration period, with the NO3−-N content increased from 2 to 33 mg l−1. A 60% depletion of COD was also recorded in this period. Denitrification occurred during the anoxic period, higher amount of NO3−1-N was removed in the reactors supplemented with carbon substrates at the concentrations of 100 and 150 mg l-1. The final inorganic nitrogen content was less than 5 mg l-1 in the reactor supplemented with 150 mg l-1 sodium acetate. Simultaneous removal of phosphorus was reported in reactors supplied with high concentration of sodium acetate. In these reactors, large amount of P was released during the anoxic/anaerobic period but the released P was taken up by bacterial cells in the subsequent aeration stage, and the final P content was less than 1.5 mg l-1 (84 % removal was achieved). Among the three carbon sources used, sodium acetate was the most efficient and effective source in removing wastewater nutrients, followed by methanol, and glucose was the least reliable substrate.


1998 ◽  
Vol 42 (8) ◽  
pp. 1900-1905 ◽  
Author(s):  
George S. Baillie ◽  
L. Julia Douglas

ABSTRACT A perfused biofilm fermentor, which allows growth-rate control of adherent microbial populations, was used to assess whether the susceptibility of Candida albicans biofilms to antifungal agents is dependent on growth rate. Biofilms were generated under conditions of glucose limitation and were perfused with drugs at a high concentration (20 times the MIC). Amphotericin B produced a greater reduction in the number of daughter cells in biofilm eluates than ketoconazole, fluconazole, or flucytosine. Similar decreases in daughter cell counts were observed when biofilms growing at three different rates were perfused with amphotericin B. In a separate series of experiments, intact biofilms, resuspended biofilm cells, and newly formed daughter cells were removed from the fermentor and were exposed to a lower concentration of amphotericin B for 1 h. The susceptibility profiles over a range of growth rates were then compared with those obtained for planktonic cells grown at the same rates under glucose limitation in a chemostat. Intact biofilms were resistant to amphotericin B at all growth rates tested, whereas planktonic cells were resistant only at low growth rates (≤0.13 h−1). Cells resuspended from biofilms were less resistant than intact biofilm populations but more resistant than daughter cells; the susceptibilities of both these cell types were largely independent of growth rate. Our findings indicate that the amphotericin B resistance of C. albicans biofilms is not simply due to a low growth rate but depends on some other feature of the biofilm mode of growth.


Molecules ◽  
2020 ◽  
Vol 25 (11) ◽  
pp. 2527
Author(s):  
Monika Rojewska ◽  
Wojciech Smułek ◽  
Krystyna Prochaska ◽  
Ewa Kaczorek

Due to the increasing use of antibiotics, measures are being taken to improve their removal from the natural environment. The support of biodegradation with natural surfactants that increase the bioavailability of impurities for microorganisms that degrade them, raises questions about their effect on bacterial cells. In this paper we present analysis of the interaction of nitrofurantoin (NFT) and saponins from the Saponaria officinalis on the environmental bacteria membrane and the model phospholipid membrane mimicking it. A wide perspective of the process is provided with the Langmuir monolayer technique and membrane permeability test with bacteria. The obtained results showed that above critical micelle concentration (CMC), saponin molecules are incorporated into the POPE monolayer, but the NFT impact was ambiguous. What is more, differences in membrane permeability between the cells exposed to NFT in comparison to that of the non-exposed cells were observed above 1.0 CMC for Achromobacter sp. KW1 or above 0.5 CMC for Pseudomonas sp. MChB. In both cases, NFT presence lowered the membrane permeability. Moreover, the Congo red adhesion to the cell membrane also decreased in the presence of a high concentration of surfactants and NFT. The results suggest that saponins are incorporated into the bacteria membrane, but their sugar hydrophilic part remains outside, which modifies the adsorption properties of the cell surface as well as the membrane permeability.


2020 ◽  
Vol 295 (29) ◽  
pp. 10008-10022 ◽  
Author(s):  
Giampiero Pietrocola ◽  
Angelica Pellegrini ◽  
Mariangela J. Alfeo ◽  
Loredana Marchese ◽  
Timothy J. Foster ◽  
...  

Staphylococcus aureus is an important bacterial pathogen that can cause a wide spectrum of diseases in humans and other animals. S. aureus expresses a variety of virulence factors that promote infection with this pathogen. These include cell-surface proteins that mediate adherence of the bacterial cells to host extracellular matrix components, such as fibronectin and fibrinogen. Here, using immunoblotting, ELISA, and surface plasmon resonance analysis, we report that the iron-regulated surface determinant B (IsdB) protein, besides being involved in heme transport, plays a novel role as a receptor for the plasma and extracellular matrix protein vitronectin (Vn). Vn-binding activity was expressed by staphylococcal strains grown under iron starvation conditions when Isd proteins are expressed. Recombinant IsdB bound Vn dose dependently and specifically. Both near-iron transporter motifs NEAT1 and NEAT2 of IsdB individually bound Vn in a saturable manner, with KD values in the range of 16–18 nm. Binding of Vn to IsdB was specifically blocked by heparin and reduced at high ionic strength. Furthermore, IsdB-expressing bacterial cells bound significantly higher amounts of Vn from human plasma than did an isdB mutant. Adherence to and invasion of epithelial and endothelial cells by IsdB-expressing S. aureus cells was promoted by Vn, and an αvβ3 integrin-blocking mAb or cilengitide inhibited adherence and invasion by staphylococci, suggesting that Vn acts as a bridge between IsdB and host αvβ3 integrin.


2019 ◽  
Vol 20 (1) ◽  
pp. 205 ◽  
Author(s):  
Julia Thom Oxford ◽  
Jonathon C. Reeck ◽  
Makenna J. Hardy

The evolution of multicellular metazoan organisms was marked by the inclusion of an extracellular matrix (ECM), a multicomponent, proteinaceous network between cells that contributes to the spatial arrangement of cells and the resulting tissue organization. [...]


2002 ◽  
Vol 30 (6) ◽  
pp. 858-863 ◽  
Author(s):  
J. P. G. Urban

The cells of the intervertebral disc exist in an unusual environment. They are embedded in a dense matrix containing a high concentration of aggrecan whose fixed negative charges regulate the extracellular ionic composition and osmolarity; both extracellular cation concentrations and osmolarity are considerably higher than those experienced by most cell types. The disc also is avascular. Oxygen levels in the centre of the nucleus, where cells may be 6–8 mm from the blood supply, are very low. Since metabolism is mainly by glycolysis, lactic acid is produced at high rates and hence the pH is acidic. Finally, the disc is subjected to mechanical forces at all times; these vary with posture and activity. In particular, because the disc is under low loads during rest and high loads during the day's activities, it loses and regains around 25% of its fluid over a diurnal cycle with consequent changes to the concentrations of extracellular matrix macromolecules and ions and hence extracellular osmolality. Here we will briefly review these factors and discuss the influence of changes in the physicochemical environment on cellular activity, in particular on the rate at which disc cells synthesize and degrade matrix macro-molecules.


2004 ◽  
Vol 70 (11) ◽  
pp. 6473-6480 ◽  
Author(s):  
Mathieu Sicard ◽  
Karine Brugirard-Ricaud ◽  
Sylvie Pag�s ◽  
Anne Lanois ◽  
Noel E. Boemare ◽  
...  

ABSTRACT Bacteria of the genus Xenorhabdus are mutually associated with entomopathogenic nematodes of the genus Steinernema and are pathogenic to a broad spectrum of insects. The nematodes act as vectors, transmitting the bacteria to insect larvae, which die within a few days of infection. We characterized the early stages of bacterial infection in the insects by constructing a constitutive green fluorescent protein (GFP)-labeled Xenorhabdus nematophila strain. We injected the GFP-labeled bacteria into insects and monitored infection. We found that the bacteria had an extracellular life cycle in the hemolymph and rapidly colonized the anterior midgut region in Spodoptera littoralis larvae. Electron microscopy showed that the bacteria occupied the extracellular matrix of connective tissues within the muscle layers of the Spodoptera midgut. We confirmed the existence of such a specific infection site in the natural route of infection by infesting Spodoptera littoralis larvae with nematodes harboring GFP-labeled Xenorhabdus. When the infective juvenile (IJ) nematodes reached the insect gut, the bacterial cells were rapidly released from the intestinal vesicle into the nematode intestine. Xenorhabdus began to escape from the anus of the nematodes when IJs were wedged in the insect intestinal wall toward the insect hemolymph. Following their release into the insect hemocoel, GFP-labeled bacteria were found only in the anterior midgut region and hemolymph of Spodoptera larvae. Comparative infection assays conducted with another insect, Locusta migratoria, also showed early bacterial colonization of connective tissues. This work shows that the extracellular matrix acts as a particular colonization site for X. nematophila within insects.


Sign in / Sign up

Export Citation Format

Share Document