The role of the physicochemical environment in determining disc cell behaviour

2002 ◽  
Vol 30 (6) ◽  
pp. 858-863 ◽  
Author(s):  
J. P. G. Urban

The cells of the intervertebral disc exist in an unusual environment. They are embedded in a dense matrix containing a high concentration of aggrecan whose fixed negative charges regulate the extracellular ionic composition and osmolarity; both extracellular cation concentrations and osmolarity are considerably higher than those experienced by most cell types. The disc also is avascular. Oxygen levels in the centre of the nucleus, where cells may be 6–8 mm from the blood supply, are very low. Since metabolism is mainly by glycolysis, lactic acid is produced at high rates and hence the pH is acidic. Finally, the disc is subjected to mechanical forces at all times; these vary with posture and activity. In particular, because the disc is under low loads during rest and high loads during the day's activities, it loses and regains around 25% of its fluid over a diurnal cycle with consequent changes to the concentrations of extracellular matrix macromolecules and ions and hence extracellular osmolality. Here we will briefly review these factors and discuss the influence of changes in the physicochemical environment on cellular activity, in particular on the rate at which disc cells synthesize and degrade matrix macro-molecules.

Biomolecules ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 349
Author(s):  
Nausika Betriu ◽  
Juan Bertran-Mas ◽  
Anna Andreeva ◽  
Carlos E. Semino

Pancreatic Ductal Adenocarcinoma (PDAC) is a fatal disease with poor prognosis because patients rarely express symptoms in initial stages, which prevents early detection and diagnosis. Syndecans, a subfamily of proteoglycans, are involved in many physiological processes including cell proliferation, adhesion, and migration. Syndecans are physiologically found in many cell types and their interactions with other macromolecules enhance many pathways. In particular, extracellular matrix components, growth factors, and integrins collect the majority of syndecans associations acting as biochemical, physical, and mechanical transducers. Syndecans are transmembrane glycoproteins, but occasionally their extracellular domain can be released from the cell surface by the action of matrix metalloproteinases, converting them into soluble molecules that are capable of binding distant molecules such as extracellular matrix (ECM) components, growth factor receptors, and integrins from other cells. In this review, we explore the role of syndecans in tumorigenesis as well as their potential as therapeutic targets. Finally, this work reviews the contribution of syndecan-1 and syndecan-2 in PDAC progression and illustrates its potential to be targeted in future treatments for this devastating disease.


4open ◽  
2019 ◽  
Vol 2 ◽  
pp. 11 ◽  
Author(s):  
Björn L.D.M. Brücher ◽  
Ijaz S. Jamall

Fibroblasts are actively involved in the creation of the stroma and the extracellular matrix which are important for cell adhesion, cell–cell communication, and tissue metabolism. The role of fibrosis in carcinogenesis can be examined by analogy to tissues of various cancers. The orchestration of letters in the interplay of manifold components with signaling and crosstalk is incompletely understood but available evidence suggests a hitherto underappreciated role for fibrosis in carcinogenesis. Complex signaling and crosstalk by pathogenic stimuli evoke persistent subclinical inflammation, which in turn, results in a cascade of different cell types, ubiquitous proteins and their corresponding enzymes, cytokine releases, and multiple signaling pathways promoting the onset of fibrosis. There is considerable evidence that the body's attempt to resolve such a modified extracellular environment leads to further disruption of homeostasis and the genesis of the precancerous niche as part of the six-step process that describes carcinogenesis. The precancerous niche is formed and can be understood to develop as a result of (1) pathogenic stimulus, (2) chronic inflammation, and (3) fibrosis with alterations of the extracellular matrix, stromal rigidity, and mechano-transduction. This is why carcinogenesis is not just a process of aberrant cell growth with damaged genetic material but the role of the PCN in its entirety reveals how carcinogenesis can occur without invoking the need for somatic mutations.


2018 ◽  
Vol 19 (10) ◽  
pp. 3028 ◽  
Author(s):  
Cameron Walker ◽  
Elijah Mojares ◽  
Armando del Río Hernández

The immense diversity of extracellular matrix (ECM) proteins confers distinct biochemical and biophysical properties that influence cell phenotype. The ECM is highly dynamic as it is constantly deposited, remodelled, and degraded during development until maturity to maintain tissue homeostasis. The ECM’s composition and organization are spatiotemporally regulated to control cell behaviour and differentiation, but dysregulation of ECM dynamics leads to the development of diseases such as cancer. The chemical cues presented by the ECM have been appreciated as key drivers for both development and cancer progression. However, the mechanical forces present due to the ECM have been largely ignored but recently recognized to play critical roles in disease progression and malignant cell behaviour. Here, we review the ways in which biophysical forces of the microenvironment influence biochemical regulation and cell phenotype during key stages of human development and cancer progression.


2020 ◽  
Vol 217 (3) ◽  
Author(s):  
Nikolaos G. Frangogiannis

TGF-β is extensively implicated in the pathogenesis of fibrosis. In fibrotic lesions, spatially restricted generation of bioactive TGF-β from latent stores requires the cooperation of proteases, integrins, and specialized extracellular matrix molecules. Although fibroblasts are major targets of TGF-β, some fibrogenic actions may reflect activation of other cell types, including macrophages, epithelial cells, and vascular cells. TGF-β–driven fibrosis is mediated through Smad-dependent or non-Smad pathways and is modulated by coreceptors and by interacting networks. This review discusses the role of TGF-β in fibrosis, highlighting mechanisms of TGF-β activation and signaling, the cellular targets of TGF-β actions, and the challenges of therapeutic translation.


2019 ◽  
Vol 28 (153) ◽  
pp. 190029 ◽  
Author(s):  
Toyoshi Yanagihara ◽  
Seidai Sato ◽  
Chandak Upagupta ◽  
Martin Kolb

Idiopathic pulmonary fibrosis is a fatal age-related lung disease characterised by progressive and irreversible scarring of the lung. Although the details are not fully understood, there has been tremendous progress in understanding the pathogenesis of idiopathic pulmonary fibrosis, which has led to the identification of many new potential therapeutic targets. In this review we discuss several of these advances with a focus on genetic susceptibility and cellular senescence primarily affecting epithelial cells, activation of profibrotic pathways, disease-enhancing fibrogenic cell types and the role of the remodelled extracellular matrix.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Daniela Welcker ◽  
Cornelia Stein ◽  
Natalia Martins Feitosa ◽  
Joy Armistead ◽  
Jin-Li Zhang ◽  
...  

AbstractThe extracellular matrix architecture is composed of supramolecular fibrillar networks that define tissue specific cellular microenvironments. Hemicentins (Hmcn1 and Hmcn2) are ancient and very large members (> 600 kDa) of the fibulin family, whose short members are known to guide proper morphology and functional behavior of specialized cell types predominantly in elastic tissues. However, the tissue distribution and function of Hemicentins within the cellular microenvironment of connective tissues has remained largely unknown. Performing in situ hybridization and immunofluorescence analyses, we found that mouse Hmcn1 and Hmcn2 show a complementary distribution throughout different tissues and developmental stages. In postnatal dermal–epidermal junctions (DEJ) and myotendinous junctions (MTJ), Hmcn1 is primarily produced by mesenchymal cells (fibroblasts, tenocytes), Hmcn2 by cells of epithelial origin (keratinocytes, myocytes). Hmcn1−/− mice are viable and show no overt phenotypes in tissue tensile strength and locomotion tests. However, transmission electron microscopy revealed ultrastructural basement membrane (BM) alterations at the DEJ and MTJ of Hmcn1−/− mice, pointing to a thus far unknown role of Hmcn1 for BM and connective tissue boundary integrity.


2014 ◽  
Vol 92 (9) ◽  
pp. 707-712 ◽  
Author(s):  
Michael P. Czubryt

Tissue integrity in the face of external physical forces requires the production of a strong extracellular matrix (ECM) composed primarily of the protein collagen. Tendons and the heart both withstand large and changing physical forces, and emerging evidence suggests that the transcription factor scleraxis plays a central role in responding to these forces by directly regulating the production of ECM components and (or) by determining the fate of matrix-producing cell types. Thus, despite the highly disparate inherent nature of these tissues, a common response mechanism may exist to govern the development, growth, and remodeling of the ECM in response to external force.


2019 ◽  
Vol 63 (3) ◽  
pp. 325-335 ◽  
Author(s):  
Pekka Rappu ◽  
Antti M. Salo ◽  
Johanna Myllyharju ◽  
Jyrki Heino

Abstract Co- and post-translational hydroxylation of proline residues is critical for the stability of the triple helical collagen structure. In this review, we summarise the biology of collagen prolyl 4-hydroxylases and collagen prolyl 3-hydroxylases, the enzymes responsible for proline hydroxylation. Furthermore, we describe the potential roles of hydroxyproline residues in the complex interplay between collagens and other proteins, especially integrin and discoidin domain receptor type cell adhesion receptors. Qualitative and quantitative regulation of collagen hydroxylation may have remarkable effects on the properties of the extracellular matrix and consequently on the cell behaviour.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Phyllis C. Leppert ◽  
Friederike L. Jayes ◽  
James H. Segars

The role of the extracellular matrix (ECM) and mechanotransduction as an important signaling factor in the human uterus is just beginning to be appreciated. The ECM is not only the substance that surrounds cells, but ECM stiffness will either compress cells or stretch them resulting in signals converted into chemical changes within the cell, depending on the amount of collagen, cross-linking, and hydration, as well as other ECM components. In this review we present evidence that the stiffness of fibroid tissue has a direct effect on the growth of the tumor through the induction of fibrosis. Fibrosis has two characteristics: (1) resistance to apoptosis leading to the persistence of cells and (2) secretion of collagen and other components of the ECM such a proteoglycans by those cells leading to abundant disposition of highly cross-linked, disoriented, and often widely dispersed collagen fibrils. Fibrosis affects cell growth by mechanotransduction, the dynamic signaling system whereby mechanical forces initiate chemical signaling in cells. Data indicate that the structurally disordered and abnormally formed ECM of uterine fibroids contributes to fibroid formation and growth. An appreciation of the critical role of ECM stiffness to fibroid growth may lead to new strategies for treatment of this common disease.


Sign in / Sign up

Export Citation Format

Share Document