scholarly journals SlSWEET15 exports sucrose from phloem and seed coat in tomato to supply carbon for fruit and seed development

2020 ◽  
Author(s):  
Han-Yu Ko ◽  
Li-Hsuan Ho ◽  
H. Ekkehard Neuhaus ◽  
Woei-Jiun Guo

ABSTRACTTomato, an important fruit crop worldwide, requires efficient sugar allocation for fruit development. However, molecular mechanisms for sugar import to fruits remain poorly understood. Expression of SWEET (Sugars Will Eventually be Exported Transporters) proteins is closely linked with hexose ratio in tomato fruits and may be involved in sugar allocation. Here, using quantitative PCR, we discovered that SlSWEET15 was highly expressed in developing fruits compared to vegetative organs. Based on in situ hybridization and GUS fusion analyses, SlSWEET15 proteins accumulated in vascular tissues and seed coats, major sites of sucrose unloading in fruits. Localizing SlSWEET15-GFP to the plasma membrane supported its putative role in apoplasmic sucrose unloading. The sucrose transport activity of SlSWEET15 was confirmed by complementary growth assays in a yeast mutant. Elimination of the SlSWEET15 function by CRISPR/cas9 gene editing significantly decreased average sizes and weights of fruits, with severe defects in seed filling and embryo development. Together, we confirmed the role of SlSWEET15 in mediating sucrose efflux from the releasing phloem to the fruit apoplasm and subsequent import into parenchyma cells during fruit development. Furthermore, SlSWEET15-mediated sucrose efflux was also required for sucrose unloading from the seed coat to the developing embryo.One-sentence SummarySlSWEET15, a specific sucrose uniporter in tomato, mediates apoplasmic sucrose unloading from releasing phloem cells and seed coat for carbon supply during fruit expansion and seed filling.

2021 ◽  
Vol 22 (12) ◽  
pp. 6557
Author(s):  
Li-Ying Ren ◽  
Heng Zhao ◽  
Xiao-Ling Liu ◽  
Tong-Kai Zong ◽  
Min Qiao ◽  
...  

Gastrodia elata is a well-known medicinal and heterotrophic orchid. Its germination, limited by the impermeability of seed coat lignin and inhibition by abscisic acid (ABA), is triggered by symbiosis with fungi such as Mycena spp. However, the molecular mechanisms of lignin degradation by Mycena and ABA biosynthesis and signaling in G. elata remain unclear. In order to gain insights into these two processes, this study analyzed the transcriptomes of these organisms during their dynamic symbiosis. Among the 25 lignin-modifying enzyme genes in Mycena, two ligninolytic class II peroxidases and two laccases were significantly upregulated, most likely enabling Mycena hyphae to break through the lignin seed coats of G. elata. Genes related to reduced virulence and loss of pathogenicity in Mycena accounted for more than half of annotated genes, presumably contributing to symbiosis. After coculture, upregulated genes outnumbered downregulated genes in G. elata seeds, suggesting slightly increased biological activity, while Mycena hyphae had fewer upregulated than downregulated genes, indicating decreased biological activity. ABA biosynthesis in G. elata was reduced by the downregulated expression of 9-cis-epoxycarotenoid dioxygenase (NCED-2), and ABA signaling was blocked by the downregulated expression of a receptor protein (PYL12-like). This is the first report to describe the role of NCED-2 and PYL12-like in breaking G. elata seed dormancy by reducing the synthesis and blocking the signaling of the germination inhibitor ABA. This study provides a theoretical basis for screening germination fungi to identify effective symbionts and for reducing ABA inhibition of G. elata seed germination.


2020 ◽  
Author(s):  
Tong Zhao ◽  
Alma Piñeyro-Nelson ◽  
Qianxia Yu ◽  
Xiaoying Hu ◽  
Huanfang Liu ◽  
...  

Abstract Background:The flower of Hedychium coronarium possesses highly specialized floral organs: a synsepalous calyx, petaloid staminodes and a labellum. The formation of these organs is controlled by two gene categories: floral organ identity genes and organ boundary genes, which may function individually or jointly during flower development. Although the floral organogenesis of H. coronarium has been studied at the morphological level, the underlying molecular mechanisms involved in its floral development still remain poorly understood. In addition, previous works analyzing the role of MADS-box genes in controlling floral organ specification in some Zingiberaceae did not address the molecular mechanisms involved in the formation of particular organ morphologies that emerge later in flower development, such as the synsepalous calyx formed through intercalary growth of adjacent sepals. Results:Here, we used comparative transcriptomics combined with Real-time quantitative PCR and mRNA in situ hybridization to investigate gene expression patterns of ABC-class genes in H. coronarium flowers, as well as the homolog of the organ boundary gene PETAL LOSS (HcPTL). qRT-PCR detection showed that HcAP3 and HcAG were expressed in both the petaloid staminode and the fertile stamen. mRNA in situ hybridization showed that HcPTL was expressed in developing meristems, including cincinnus primordia, floral primordia, common primordia and almost all new initiating floral organ primordia.Conclusions:Our studies found that stamen/petal identity or stamen fertility in H. coronarium was not necessarily correlated with the differential expression of HcAP3 and HcAG. We also found a novel spatio-temporal expression pattern for HcPTL mRNA, suggesting it may have evolved a lineage-specific role in the morphogenesis of the Hedychium flower. Our study provides a new transcriptome reference and a functional hypothesis regarding the role of a boundary gene in organ fusion that should be further addressed through phylogenetic analyzes of this gene, as well as functional studies.


2005 ◽  
Vol 143 (1) ◽  
pp. 43-55 ◽  
Author(s):  
L. W. ZENG ◽  
P. S. COCKS ◽  
S. G. KAILIS ◽  
J. KUO

Changes in the seed coat morphology of 12 annual legumes were studied using environmental scanning electron microscopy (ESEM). The seeds of Biserrula pelecinus L. cv. Casbah, Ornithopus sativus cv. Cadiz, Trifolium clypeatum L., T. spumosum L., T. subterraneum L. cv. Bacchus Marsh, Trigonella balansae Boiss. & Reuter., Trigonella monspeliaca L. and Vicia sativa subsp. amphicarpa Dorthes (morthes.) were examined by ESEM after exposure to field conditions for 6 months, while those of Medicago polymorpha L. cv. Circle Valley, Trifolium clypeatum L., T. glanduliferum Boiss., T. lappaceum L., T. spumosum L., and T. subterraneum L. cv. Dalkeith, were examined after 2 years' exposure. The entry of water into seeds was followed by covering various parts of the seed coat with petroleum jelly and soaking the treated seeds in dyes.As the seeds softened over time, more and larger fractures appeared on the seed coat. Water entered the seed either through fractures, over the seed coat as a whole or through the lens. It is hypothesized that the formation of fractures occurs after physicochemical changes in the seed coat, probably associated with changes in the amount and nature of seed coat lipids.The newly matured whole seeds of M. polymorpha cv. Circle Valley, T. clypeatum, T. glanduliferum, T. lappaceum, T. spumosum, and T. subterraneum cv. Dalkeith were analysed for lipid content in 1997. The seed coats of T. subterraneum cv. Dalkeith and T. spumosum were separated from the cotyledons and examined in detail for lipid content.The lipid content of whole seeds ranged from 48 (T. lappaceum) to 167 mg/g (T. subterraneum cv. Dalkeith). Total lipid of the whole seeds of T. subterraneum cv. Dalkeith and T. glanduliferum declined by about 9 mg/g over 2 years, while in T. spumosum it declined by about 17 mg/g.In contrast, the major fatty acids in the seed coat declined by 0·67 mg/g over the 2 years. Change in seed coat lipids showed a marked similarity to changes in hardseededness for both T. subterraneum cv. Dalkeith and T. spumosum. The results strongly suggest that seed softening is associated with loss of lipids in the seed coat, because lipids have physical characteristics that are altered at temperatures experienced in the field.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Lulu Wang ◽  
Yi Li ◽  
Xingyue Jin ◽  
Liping Liu ◽  
Xiaozhuan Dai ◽  
...  

AbstractProper flower development is essential for sexual reproductive success and the setting of fruits and seeds. The availability of a high quality genome sequence for pineapple makes it an excellent model for studying fruit and floral organ development. In this study, we sequenced 27 different pineapple floral samples and integrated nine published RNA-seq datasets to generate tissue- and stage-specific transcriptomic profiles. Pairwise comparisons and weighted gene co-expression network analysis successfully identified ovule-, stamen-, petal- and fruit-specific modules as well as hub genes involved in ovule, fruit and petal development. In situ hybridization confirmed the enriched expression of six genes in developing ovules and stamens. Mutant characterization and complementation analysis revealed the important role of the subtilase gene AcSBT1.8 in petal development. This work provides an important genomic resource for functional analysis of pineapple floral organ growth and fruit development and sheds light on molecular networks underlying pineapple reproductive organ growth.


1997 ◽  
Vol 7 (1) ◽  
pp. 21-26 ◽  
Author(s):  
Mumtaz Khan ◽  
Paul B. Cavers ◽  
Marguerite Kane ◽  
Ken Thompson

AbstractProso millet (Panicum miliaceumL.) is both a crop and a weed in many parts of the world. The weedy biotypes exhibit a wide range of seed colours, but the strains with the most persistent seeds are distinguished by darker seeds. This paper compares the seed biology of a range of biotypes from Canada and demonstrates that darker seeds have heavier seed coats, imbibe and germinate more slowly, and suffer less imbibition damage (measured as electrolyte leakage). It is concluded that all these attributes contribute to the increased persistence in the soil of the dark-seeded weedy biotypes. Imbibition damage is widely implicated in poor emergence and low vigour of crop seeds, but has not previously been considered in the context of weed seed persistence.


2011 ◽  
pp. 225-232
Author(s):  
Simona Corrao ◽  
Giampiero La Rocca ◽  
Rita Anzalone ◽  
Lorenzo Marasà ◽  
Felicia Farina ◽  
...  

Oesophageal cancer (OC) is one of the most common and severe forms of tumor. A wider knowledge of molecular mechanisms which lead to a normal epithelium becoming a neoplasm may reveal new strategies to improve treatment and outcome of this disease. In this review, we report recent findings concerning molecular events which take place during carcinogenesis of the oesophagus. In particular, we focus on the role of two molecules, CD1a and Hsp60, which are overexpressed in oesophageal and many other types of tumor. Both molecules may present tumor antigens and promote in situ the stimulation of an antitumoral immune activity. We suggest there is a synergistic action between these molecules. Further knowledge about their intracellular pathways and extracellular roles may help develop new antitumoral tools for OC.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1208-1208
Author(s):  
Alberto Rissone ◽  
Jaya Jagadeesh ◽  
Simon Karen ◽  
Kevin Bishop ◽  
Trevor Blake ◽  
...  

Abstract Abstract 1208 Introduction: The adenylate kinase (AK) gene family consists of 7 different members that contribute to energy cell metabolism by converting ATP + AMP to 2 molecules of ADP. AKs are critical players in ensuring cellular energy homeostasis in all tissues and are generally involved in a broad range of cellular functions. Among AKs, AK2 has unique features such as its location in the mitochondrial intermembrane space and critical role in human lymphopoiesis and granulopoiesis. Indeed, mutations of the AK2 gene cause reticular dysgenesis (RD), an autosomal recessive form of severe combined immunodeficiency (SCID) characterized by an early differentiation arrest in the granulocyte lineage and impaired lymphoid maturation. The mechanisms underlying the pathophysiology of RD remain unclear. The phenotype of AK2 deficient animals has not been reported in the literature, but murine lines carrying homozygous inactivating retroviral insertions are embryonically lethal (our personal observations). Objectives: To study the role of AK2 in hematopoietic system development and define the effects of AK2 deficiency, we set out to generate a zebrafish model of RD. Methods: We injected zebrafish embryos with morpholino oligomers specific for the two zebrafish AK2 isoforms and analyzed the serial expression pattern of several hematopoietic markers in developing AK2 morphants. To confirm our observations in AK2 knockdown embryos, we screened a zebrafish DNA library of ENU-induced mutations and recovered a mutant fish line carrying a T371C/L124P missense mutation within the exon 4 of AK2 gene that is predicted to be deleterious for protein stability and function. Results: The downregulation of zebrafish AK2 expression phenocopied the human disease and resulted in strong reduction of developing lymphocytes. In addition, in situ hybridization for GATA1, alpha-globin 1, L-plastin and Odianisidine staining indicated that erythroid development was affected in AK2 morphants during primitive hematopoiesis, while myeloid development was conserved. Furthermore, in situ hybridization studies of the expression of markers of zebrafish definitive hematopoiesis showed abnormalities distributed among all hematopoietic lineages suggesting a broad role of AK2 in zebrafish hematopoiesis. Importantly, the ENU-induced Ak2 mutant recapitulated all the primitive and definitive hematopoietic phenotypes observed in AK2 morphants. Finally, preliminary data suggest that AK2 deficiency (both in morphant and mutant embryos) induces an increased level of reactive oxygen species (ROS) triggering oxidative stress and consequent apoptosis in hematopoietic progenitor cells. Conclusions: Our data provide new insights into the AK2 function and indicate that zebrafish represents a good model for studying the molecular mechanisms involved in RD. To date, our mutant line represents the first example of animal model of this rare and unique human disease. Disclosures: No relevant conflicts of interest to declare.


2017 ◽  
Vol 216 (7) ◽  
pp. 1925-1936 ◽  
Author(s):  
Oleg Milberg ◽  
Akiko Shitara ◽  
Seham Ebrahim ◽  
Andrius Masedunskas ◽  
Muhibullah Tora ◽  
...  

Membrane remodeling plays a fundamental role during a variety of biological events. However, the dynamics and the molecular mechanisms regulating this process within cells in mammalian tissues in situ remain largely unknown. In this study, we use intravital subcellular microscopy in live mice to study the role of the actomyosin cytoskeleton in driving the remodeling of membranes of large secretory granules, which are integrated into the plasma membrane during regulated exocytosis. We show that two isoforms of nonmuscle myosin II, NMIIA and NMIIB, control distinct steps of the integration process. Furthermore, we find that F-actin is not essential for the recruitment of NMII to the secretory granules but plays a key role in the assembly and activation of NMII into contractile filaments. Our data support a dual role for the actomyosin cytoskeleton in providing the mechanical forces required to remodel the lipid bilayer and serving as a scaffold to recruit key regulatory molecules.


Author(s):  
Jin Cheng ◽  
Xiaoning Duan ◽  
Xin Fu ◽  
Yanfang Jiang ◽  
Peng Yang ◽  
...  

Osteoarthritis (OA) is a highly prevalent and debilitating joint disorder that characterized by progressive destruction of articular cartilage. There is no effective disease-modifying therapy for the condition due to limited understanding of the molecular mechanisms on cartilage maintenance and destruction. Receptor-interacting protein kinase 1 (RIP1)-mediated necroptosis plays a vital role in various diseases, but the involvement of RIP1 in OA pathogenesis remains largely unknown. Here we show that typical necrotic cell morphology is observed within human OA cartilage samples in situ, and that RIP1 is significantly upregulated in cartilage from both OA patients and experimental OA rat models. Intra-articular RIP1 overexpression is sufficient to induce structural and functional defects of cartilage in rats, highlighting the crucial role of RIP1 during OA onset and progression by mediating chondrocyte necroptosis and disrupting extracellular matrix (ECM) metabolism homeostasis. Inhibition of RIP1 activity by its inhibitor necrostatin-1 protects the rats from trauma-induced cartilage degradation as well as limb pain. More importantly, we identify bone morphogenetic protein 7 (BMP7) as a novel downstream target that mediates RIP1-induced chondrocyte necroptosis and OA manifestations, thereby representing a non-canonical regulation mode of necroptosis. Our study supports a model whereby the activation of RIP1-BMP7 functional axis promotes chondrocyte necroptosis and subsequent OA pathogenesis, thus providing a new therapeutic target for OA.


2021 ◽  
Vol 7 (12) ◽  
pp. 1000
Author(s):  
Leslie Commey ◽  
Theophilus K. Tengey ◽  
Christopher J. Cobos ◽  
Lavanya Dampanaboina ◽  
Kamalpreet K. Dhillon ◽  
...  

Aflatoxin contamination is a global menace that adversely affects food crops and human health. Peanut seed coat is the outer layer protecting the cotyledon both at pre- and post-harvest stages from biotic and abiotic stresses. The aim of the present study is to investigate the role of seed coat against A. flavus infection. In-vitro seed colonization (IVSC) with and without seed coat showed that the seed coat acts as a physical barrier, and the developmental series of peanut seed coat showed the formation of a robust multilayered protective seed coat. Radial growth bioassay revealed that both insoluble and soluble seed coat extracts from 55-437 line (resistant) showed higher A. flavus inhibition compared to TMV-2 line (susceptible). Further analysis of seed coat biochemicals showed that hydroxycinnamic and hydroxybenzoic acid derivatives are the predominant phenolic compounds, and addition of these compounds to the media inhibited A. flavus growth. Gene expression analysis showed that genes involved in lignin monomer, proanthocyanidin, and flavonoid biosynthesis are highly abundant in 55-437 compared to TMV-2 seed coats. Overall, the present study showed that the seed coat acts as a physical and biochemical barrier against A. flavus infection and its potential use in mitigating the aflatoxin contamination.


Sign in / Sign up

Export Citation Format

Share Document