scholarly journals Coevolutionary Analysis and Perturbation-Based Network Modeling of the SARS-CoV-2 Spike Protein Complexes with Antibodies: Binding-Induced Control of Dynamics, Allosteric Interactions and Signaling

2021 ◽  
Author(s):  
Gennady M. Verkhivker ◽  
Luisa Di Paola

AbstractThe structural and biochemical studies of the SARS-CoV-2 spike glycoproteins and complexes with highly potent antibodies have revealed multiple conformation-dependent epitopes highlighting the link between conformational plasticity of spike proteins and capacity for eliciting specific binding and broad neutralization responses. In this study, we used coevolutionary analysis, molecular simulations, and perturbation-based hierarchical network modeling of the SARS-CoV-2 S complexes with H014, S309, S2M11 and S2E12 antibodies targeting distinct epitopes to explore molecular mechanisms underlying binding-induced modulation of dynamics, stability and allosteric signaling in the spike protein trimers. The results of this study revealed key regulatory centers that can govern allosteric interactions and communications in the SARS-CoV-2 spike proteins. Through coevolutionary analysis of the SARS-CoV-2 spike proteins, we identified highly coevolving hotspots and functional clusters forming coevolutionary networks. The results revealed significant coevolutionary couplings between functional regions separated by the medium-range distances which may help to facilitate a functional cross-talk between distant allosteric regions in the SARS-CoV-2 spike complexes with antibodies. We also discovered a potential mechanism by which antibody-specific targeting of coevolutionary centers can allow for efficient modulation of allosteric interactions and signal propagation between remote functional regions. Using a hierarchical network modeling and perturbation-response scanning analysis, we demonstrated that binding of antibodies could leverage direct contacts with coevolutionary hotspots to allosterically restore and enhance couplings between spatially separated functional regions, thereby protecting the spike apparatus from membrane fusion. The results of this study also suggested that antibody binding can induce a switch from a moderately cooperative population-shift mechanism, governing structural changes of the ligand-free SARS-CoV-2 spike protein, to antibody-induced highly cooperative mechanism that can better withstand mutations in the functional regions without significant deleterious consequences for protein function. This study provides a novel insight into allosteric regulatory mechanisms of SARS-CoV-2 S proteins, showing that antibodies can modulate allosteric interactions and signaling of spike proteins, providing a plausible strategy for therapeutic intervention by targeting specific hotspots of allosteric interactions in the SARS-CoV-2 proteins.

2021 ◽  
Author(s):  
Gennady M. Verkhivker ◽  
Steve Agajanian ◽  
Deniz Yazar Oztas ◽  
Grace Gupta

AbstractIn this study, we used an integrative computational approach focused on comparative perturbation-based modeling to examine molecular mechanisms and determine functional signatures underlying role of functional residues in the SARS-CoV-2 spike protein that are targeted by novel mutational variants and antibody-escaping mutations. Atomistic simulations and functional dynamics analysis are combined with alanine scanning and mutational sensitivity profiling for the SARS-CoV-2 spike protein complexes with the ACE2 host receptor are REGN-COV2 antibody cocktail (REG10987+REG10933). Using alanine scanning and mutational sensitivity analysis, we have shown that K417, E484 and N501 residues correspond to key interacting centers with a significant degree of structural and energetic plasticity that allow mutants in these positions to afford the improved binding affinity with ACE2. Through perturbation-based network modeling and community analysis of the SARS-CoV-2 spike protein complexes with ACE2 we demonstrate that E406, N439, K417 and N501 residues serve as effector centers of allosteric interactions and anchor major inter-molecular communities that mediate long-range communication in the complexes. The results provide support to a model according to which mutational variants and antibody-escaping mutations constrained by the requirements for host receptor binding and preservation of stability may preferentially select structurally plastic and energetically adaptable allosteric centers to differentially modulate collective motions and allosteric interactions in the complexes with the ACE2 enzyme and REGN-COV2 antibody combination. This study suggests that SARS-CoV-2 spike protein may function as a versatile and functionally adaptable allosteric machine that exploits plasticity of allosteric regulatory centers to fine-tune response to antibody binding without compromising activity of the spike protein.


1999 ◽  
Vol 82 (08) ◽  
pp. 277-282 ◽  
Author(s):  
Yuri Veklich ◽  
Jean-Philippe Collet ◽  
Charles Francis ◽  
John W. Weisel

IntroductionMuch is known about the fibrinolytic system that converts fibrin-bound plasminogen to the active protease, plasmin, using plasminogen activators, such as tissue-type plasminogen activator (t-PA) and urokinase-type plasminogen activator. Plasmin then cleaves fibrin at specific sites and generates soluble fragments, many of which have been characterized, providing the basis for a molecular model of the polypeptide chain degradation.1-3 Soluble degradation products of fibrin have also been characterized by transmission electron microscopy, yielding a model for their structure.4 Moreover, high resolution, three-dimensional structures of certain fibrinogen fragments has provided a wealth of information that may be useful in understanding how various proteins bind to fibrin and the overall process of fibrinolysis (Doolittle, this volume).5,6 Both the rate of fibrinolysis and the structures of soluble derivatives are determined in part by the fibrin network structure itself. Furthermore, the activation of plasminogen by t-PA is accelerated by the conversion of fibrinogen to fibrin, and this reaction is also affected by the structure of the fibrin. For example, clots made of thin fibers have a decreased rate of conversion of plasminogen to plasmin by t-PA, and they generally are lysed more slowly than clots composed of thick fibers.7-9 Under other conditions, however, clots made of thin fibers may be lysed more rapidly.10 In addition, fibrin clots composed of abnormally thin fibers formed from certain dysfibrinogens display decreased plasminogen binding and a lower rate of fibrinolysis.11-13 Therefore, our increasing knowledge of various dysfibrinogenemias will aid our understanding of mechanisms of fibrinolysis (Matsuda, this volume).14,15 To account for these diverse observations and more fully understand the molecular basis of fibrinolysis, more knowledge of the physical changes in the fibrin matrix that precede solubilization is required. In this report, we summarize recent experiments utilizing transmission and scanning electron microscopy and confocal light microscopy to provide information about the structural changes occurring in polymerized fibrin during fibrinolysis. Many of the results of these experiments were unexpected and suggest some aspects of potential molecular mechanisms of fibrinolysis, which will also be described here.


2020 ◽  
Author(s):  
Cristina Garcia-Iriepa ◽  
Cecilia Hognon ◽  
Antonio Francés-Monerris ◽  
Isabel Iriepa ◽  
Tom Miclot ◽  
...  

<div><p>Since the end of 2019, the coronavirus SARS-CoV-2 has caused more than 180,000 deaths all over the world, still lacking a medical treatment despite the concerns of the whole scientific community. Human Angiotensin-Converting Enzyme 2 (ACE2) was recently recognized as the transmembrane protein serving as SARS-CoV-2 entry point into cells, thus constituting the first biomolecular event leading to COVID-19 disease. Here, by means of a state-of-the-art computational approach, we propose a rational evaluation of the molecular mechanisms behind the formation of the complex and of the effects of possible ligands. Moreover, binding free energy between ACE2 and the active Receptor Binding Domain (RBD) of the SARS-CoV-2 spike protein is evaluated quantitatively, assessing the molecular mechanisms at the basis of the recognition and the ligand-induced decreased affinity. These results boost the knowledge on the molecular grounds of the SARS-CoV-2 infection and allow to suggest rationales useful for the subsequent rational molecular design to treat severe COVID-19 cases.</p></div>


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 706
Author(s):  
Antonio J. Moreno-Pérez ◽  
Raquel Martins-Noguerol ◽  
Cristina DeAndrés-Gil ◽  
Mónica Venegas-Calerón ◽  
Rosario Sánchez ◽  
...  

Histone modifications are of paramount importance during plant development. Investigating chromatin remodeling in developing oilseeds sheds light on the molecular mechanisms controlling fatty acid metabolism and facilitates the identification of new functional regions in oil crop genomes. The present study characterizes the epigenetic modifications H3K4me3 in relationship with the expression of fatty acid-related genes and transcription factors in developing sunflower seeds. Two master transcriptional regulators identified in this analysis, VIV1 (homologous to Arabidopsis ABI3) and FUS3, cooperate in the regulation of WRINKLED 1, a transcriptional factor regulating glycolysis, and fatty acid synthesis in developing oilseeds.


Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 308
Author(s):  
Marion Buffard ◽  
Aurélien Naldi ◽  
Gilles Freiss ◽  
Marcel Deckert ◽  
Ovidiu Radulescu ◽  
...  

Spleen tyrosine kinase (SYK) can behave as an oncogene or a tumor suppressor, depending on the cell and tissue type. As pharmacological SYK inhibitors are currently evaluated in clinical trials, it is important to gain more information on the molecular mechanisms underpinning these opposite roles. To this aim, we reconstructed and compared its signaling networks using phosphoproteomic data from breast cancer and Burkitt lymphoma cell lines where SYK behaves as a tumor suppressor and promoter. Bioinformatic analyses allowed for unveiling the main differences in signaling pathways, network topology and signal propagation from SYK to its potential effectors. In breast cancer cells, the SYK target-enriched signaling pathways included intercellular adhesion and Hippo signaling components that are often linked to tumor suppression. In Burkitt lymphoma cells, the SYK target-enriched signaling pathways included molecules that could play a role in SYK pro-oncogenic function in B-cell lymphomas. Several protein interactions were profoundly rewired in the breast cancer network compared with the Burkitt lymphoma network. These data demonstrate that proteomic profiling combined with mathematical network modeling allows untangling complex pathway interplays and revealing difficult to discern interactions among the SYK pathways that positively and negatively affect tumor formation and progression.


2021 ◽  
Vol 9 (4) ◽  
pp. 683
Author(s):  
Julio Villena ◽  
Chang Li ◽  
Maria Guadalupe Vizoso-Pinto ◽  
Jacinto Sacur ◽  
Linzhu Ren ◽  
...  

The most important characteristics regarding the mucosal infection and immune responses against the Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) as well as the current vaccines against coronavirus disease 2019 (COVID-19) in development or use are revised to emphasize the opportunity for lactic acid bacteria (LAB)-based vaccines to offer a valid alternative in the fight against this disease. In addition, this article revises the knowledge on: (a) the cellular and molecular mechanisms involved in the improvement of mucosal antiviral defenses by beneficial Lactiplantibacillus plantarum strains, (b) the systems for the expression of heterologous proteins in L. plantarum and (c) the successful expressions of viral antigens in L. plantarum that were capable of inducing protective immune responses in the gut and the respiratory tract after their oral administration. The ability of L. plantarum to express viral antigens, including the spike protein of SARS-CoV-2 and its capacity to differentially modulate the innate and adaptive immune responses in both the intestinal and respiratory mucosa after its oral administration, indicates the potential of this LAB to be used in the development of a mucosal COVID-19 vaccine.


2021 ◽  
Vol 22 (7) ◽  
pp. 3491
Author(s):  
Grażyna B. Dąbrowska ◽  
Zuzanna Garstecka ◽  
Ewa Olewnik-Kruszkowska ◽  
Grażyna Szczepańska ◽  
Maciej Ostrowski ◽  
...  

Plastic pollution is one of the crucial global challenges nowadays, and biodegradation is a promising approach to manage plastic waste in an environment-friendly and cost-effective way. In this study we identified the strain of fungus Trichoderma viride GZ1, which was characterized by particularly high pectinolytic activity. Using differential scanning calorimetry, Fourier-transform infrared spectroscopy techniques, and viscosity measurements we showed that three-month incubation of polylactide and polyethylene terephthalate in the presence of the fungus lead to significant changes of the surface of polylactide. Further, to gain insight into molecular mechanisms underneath the biodegradation process, western blot hybridization was used to show that in the presence of poly(ethylene terephthalate) (PET) in laboratory conditions the fungus produced hydrophobin proteins. The mycelium adhered to the plastic surface, which was confirmed by scanning electron microscopy, possibly due to the presence of hydrophobins. Further, using atomic force microscopy we demonstrated for the first time the formation of hydrophobin film on the surface of aliphatic polylactide (PLA) and PET by T. viride GZ1. This is the first stage of research that will be continued under environmental conditions, potentially leading to a practical application.


2015 ◽  
Vol 112 (44) ◽  
pp. 13467-13472 ◽  
Author(s):  
Danya J. Martell ◽  
Chandra P. Joshi ◽  
Ahmed Gaballa ◽  
Ace George Santiago ◽  
Tai-Yen Chen ◽  
...  

Metalloregulators respond to metal ions to regulate transcription of metal homeostasis genes. MerR-family metalloregulators act on σ70-dependent suboptimal promoters and operate via a unique DNA distortion mechanism in which both the apo and holo forms of the regulators bind tightly to their operator sequence, distorting DNA structure and leading to transcription repression or activation, respectively. It remains unclear how these metalloregulator−DNA interactions are coupled dynamically to RNA polymerase (RNAP) interactions with DNA for transcription regulation. Using single-molecule FRET, we study how the copper efflux regulator (CueR)—a Cu+-responsive MerR-family metalloregulator—modulates RNAP interactions with CueR’s cognate suboptimal promoter PcopA, and how RNAP affects CueR−PcopAinteractions. We find that RNAP can form two noninterconverting complexes at PcopAin the absence of nucleotides: a dead-end complex and an open complex, constituting a branched interaction pathway that is distinct from the linear pathway prevalent for transcription initiation at optimal promoters. Capitalizing on this branched pathway, CueR operates via a “biased sampling” instead of “dynamic equilibrium shifting” mechanism in regulating transcription initiation; it modulates RNAP’s binding–unbinding kinetics, without allowing interconversions between the dead-end and open complexes. Instead, the apo-repressor form reinforces the dominance of the dead-end complex to repress transcription, and the holo-activator form shifts the interactions toward the open complex to activate transcription. RNAP, in turn, locks CueR binding at PcopAinto its specific binding mode, likely helping amplify the differences between apo- and holo-CueR in imposing DNA structural changes. Therefore, RNAP and CueR work synergistically in regulating transcription.


Author(s):  
Swee-Suak Ko ◽  
Min-Jeng Li ◽  
Yi-Cheng Ho ◽  
Chun-Ping Yu ◽  
Ting-Ting Yang ◽  
...  

Abstract GAMYB, UDT1, TIP2/bHLH142, TDR, and EAT1/DTD are important transcription factors (TFs) that play a crucial role during rice pollen development. This study demonstrates that bHLH142 acts downstream of UDT1 and GAMYB and works as a “hub” in these two pollen pathways. We show that GAMYB modulates bHLH142 expression through specific binding to the MYB motif of bHLH142 promoter during early stage of pollen development; while TDR acts as a transcriptional repressor of the GAMYB modulation of bHLH142 by binding to the E-box close to the MYB motif on the promoter. The altered expression of TFs highlights the importance that a tight, precise, and coordinated regulation among these TFs is essential for normal pollen development. Most notably, this study illustrates the regulatory pathways of GAMYB and UDT1 that rely on bHLH142 in a direct and an indirect manner, respectively, and function in different tissues with distinct biological functions during pollen development. This study advances our understanding of the molecular mechanisms of rice pollen development.


Author(s):  
Cecy Xi ◽  
Arianna Arianna Di Fazio ◽  
Naveed Nadvi ◽  
Karishma Patel ◽  
Michelle Xiang ◽  
...  

Proteases catalyse irreversible posttranslational modifications that often alter a biological function of the substrate. The protease dipeptidyl peptidase 4 (DPP4) is a pharmacological target in type 2 diabetes therapy primarily because it inactivates glucagon-like protein-1. DPP4 also has roles in steatosis, insulin resistance, cancers and inflammatory and fibrotic diseases. In addition, DPP4 binds to the spike protein of MERS virus, causing it to be the human cell surface receptor for that virus. DPP4 has been identified as a potential binding target of SARS-CoV-2 spike protein, so this question requires experimental investigation. Understanding protein structure and function requires reliable protocols for production and purification. We developed such strategies for baculovirus generated soluble recombinant human DPP4 (residues 29-766) produced in insect cells. Purification used differential ammonium sulfate precipitation, hydrophobic interaction chromatography, dye affinity chromatography in series with immobilised metal affinity chromatography, and ion exchange chromatography. The binding affinities of DPP4 to the SARS-CoV-2 full-length spike protein and its receptor binding domain (RBD) were measured using surface plasmon resonance. This optimised DPP4 purification procedure yielded 1 to 1.8 mg of pure fully active soluble DPP4 protein per litre of insect cell culture with specific activity &gt;30 U/mg, indicative of high purity. No specific binding between DPP4 and CoV-2 spike protein was detected. In summary, a procedure for high purity high yield soluble human DPP4 was achieved and used to show that, unlike MERS, SARS-CoV-2 does not bind human DPP4.


Sign in / Sign up

Export Citation Format

Share Document