scholarly journals Drivers of inter-population variation in the gut microbiomes of sister species of Phanaeus dung beetles

2021 ◽  
Author(s):  
Claire C. Winfrey ◽  
Kimberly S. Sheldon

ABSTRACTThe microbiome plays key roles in host physiology and ecology, but how the microbiome varies among populations of hosts is not well understood. However, different abiotic and biotic selection pressures across a species’ range likely lead to variation in the microbiome. In addition, symbiotic microbiota may differ more between closely-related species in sympatry than in allopatry if selection favors the reduction of interspecific competition. We investigated variation in the maternally-transmitted, beneficial gut microbiomes of Phanaeus vindex and P. difformis, sister species of dung beetle that compete for the same resources in sympatry and occur across diverse climatic conditions. We sampled and sequenced bacterial/archaeal 16S rDNA from guts of P. difformis and P. vindex collected across 17 sympatric and allopatric sites. Gut microbial communities were best predicted by temperature and precipitation, cattle present at sites, and spatial relationships among sites. Contrary to our hypotheses, we did not find that the gut microbial communities of P. vindex and P. difformis differed more in sympatry than in allopatry, nor that P. vindex, the more broadly distributed of the two species, exhibited greater microbiome turnover among populations. However, the gut microbiome of P. vindex shifted more between sympatric and allopatric populations than did that of P. difformis, suggesting character displacement. While more research is needed, it is possible that differences in gut microbial communities allow P. vindex and P. difformis to partition their niches in sympatry. Our work argues for further exploration of the gut microbiome’s potential role in niche partitioning and local adaptation.

2018 ◽  
Author(s):  
Anderson Matos Medina

AbstractClimatic conditions are the main driver of species richness. Specifically, the increase in climatic instability may reduce species richness directly and indirectly by reducing resources available. This hypothesis is evaluated here using a producer-consumer interaction to explain dung beetle richness on a continental scale (America) using mammal richness as resource proxy and temperature and precipitation seasonality as a proxy for climatic instability. A spatial path analysis was built in order to evaluate this hypothesis while controlling for spatial autocorrelation and differences in the sampling effort and abundance of each study (n=115) gathered from the literature. Dung beetle richness was directly explained by temperature seasonality, precipitation seasonality, and mammal richness, whereas only precipitation seasonality had an effect modulated by mammal richness. This result reinforces the notion that species richness can be explained by climatic conditions, but also reveals the importance of biotic interactions in order to understand the mechanisms behind such patterns.


Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 334
Author(s):  
Norbert Szymański ◽  
Sławomir Wilczyński

The present study identified the similarities and differences in the radial growth responses of 20 provenances of 51-year-old European larch (Larix decidua Mill.) trees from Poland to the climatic conditions at three provenance trials situated in the Polish lowlands (Siemianice), uplands (Bliżyn) and mountains (Krynica). A chronology of radial growth indices was developed for each of 60 European larch populations, which highlighted the interannual variations in the climate-mediated radial growth of their trees. With the aid of principal component, correlation and multiple regression analysis, supra-regional climatic elements were identified to which all the larch provenances reacted similarly at all three provenance trials. They increased the radial growth in years with a short, warm and precipitation-rich winter; a cool and humid summer and when high precipitation in late autumn of the previous year was noted. Moreover, other climatic elements were identified to which two groups of the larch provenances reacted differently at each provenance trial. In the lowland climate, the provenances reacted differently to temperature in November to December of the previous year and July and to precipitation in September. In the upland climate, the provenances differed in growth sensitivity to precipitation in October of the previous year and June–September. In the mountain climate, the provenances responded differently to temperature and precipitation in September of the previous year and to precipitation in February, June and September of the year of tree ring formation. The results imply that both climatic factors and origin (genotype), i.e., the genetic factor, mediate the climate–growth relationships of larch provenances.


2021 ◽  
pp. 41-48
Author(s):  
Halina A. Kamyshenka

The results of a statistical assessment of the influence of changing weather and climatic conditions of the territory of Belarus on the productivity of the main winter cereal crops are presented in order to build computational models of productivity. The calculations were made with respect to the climatic component as a predictor, taking into account the deviations of air temperature and precipitation from the long-term climatic norm of months that have the most significant effect on the yield of the studied crops. For winter rye and wheat, adequate models of yield variability have been built. The research results are relevant for solving forecasting problems.


2020 ◽  
Vol 12 (3) ◽  
pp. 366-372
Author(s):  
Parviz NORMATOV ◽  
◽  
Inom NORMATOV ◽  
Richard ARMSTRONG ◽  
◽  
...  

The research object. The hydrological characteristics of the Gunt and Vanch rivers belonging to the Southwestern and Central climatic zones of the Pamirs and are tributaries of the transboundary Pyanj River are considered. Long-term average values of temperature and precipitation as the main factors affecting the formation of river flows are determined for the period 1944–2016. The state of glaciation in the basins of the respective rivers is estimated. Goal. A comparative assessment of the influence of climatic features and mountain orography on the formation of river flows. Determination of the trend of changes in the climatic conditions of the Gunt and Vanch river basins at different periods of more than 70 years (1944–2016). Research methods. Generalization, systematization of meteorological and hydrological characteristics and determination of their change compared with the base period 1960–1990. Statistical processing of meteorological and hydrological data and establishing a trend of changes in climatic and hydrological characteristics using a differentiated method. Research results. It is shown that the nature of changes in hydrological characteristics, namely the flow of rivers in different climatic zones of the Pamir can differ significantly. On the example of two rivers (Gunt and Vanch) - tributaries of the transboundary Pyanj river, it is shown that the trend of change in the flow of the Gunt river differs from the Vanch river due to the state of glaciation of the river basin. To explain the results the meteorological conditions of the respective river basins and their possible impact on river hydrology were studied. Conclusion. The hydrological characteristics of the Gunt and Vanch rivers in the Pamirs taking into account the meteorological conditions of the respective river basins show that a key factor in improving the state of glaciation and reducing degradation processes, as well as achieving positive trends in the mass balance of glaciers is the presence of sufficient air mass in the glaciation zone. Naturally, this is the key to ensuring a sufficient amount of runoff.


Author(s):  
V. V. Hrynchak

The decision about writing this article was made after familiarization with the "Brief Climatic Essay of Dnepropetrovsk City (prepared based on observations of 1886 – 1937)" written by the Head of the Dnipropetrovsk Weather Department of the Hydrometeorological Service A. N. Mikhailov. The guide has a very interesting fate: in 1943 it was taken by the Nazis from Dnipropetrovsk and in 1948 it returned from Berlin back to the Ukrainian Hydrometeorological and Environmental Directorate of the USSR, as evidenced by a respective entry on the Essay's second page. Having these invaluable materials and data of long-term weather observations in Dnipro city we decided to analyze climate changes in Dnipropetrovsk region. The article presents two 50-year periods, 1886-1937 and 1961-2015, as examples. Series of observations have a uniform and representative character because they were conducted using the same methodology and results processing. We compared two main characteristics of climate: air temperature and precipitation. The article describes changes of average annual temperature values and absolute temperature values. It specifies the shift of seasons' dates and change of seasons' duration. We studied the changes of annual precipitation and peculiarities of their seasonable distribution. Apart from that peculiarities of monthly rainfall fluctuations and their heterogeneity were specified. Since Dnipro city is located in the center of the region the identified tendencies mainly reflect changes of climatic conditions within the entire Dnipropetrovsk region.


2021 ◽  
Vol 36 ◽  
pp. 01003
Author(s):  
Elena Vologzhanina ◽  
Galina Batalova

The results of the study of 12 varieties and promising lines of glumaceous oat in the competitive variety testing of the FASC of the North-East (Kirov region) in the period from 2018 to 2020 are presented. The purpose of the research is to assess the productivity, ecological plasticity and stability of the genotypes of glumaceous oat for feed and universal use in the conditions of the Volga-Vyatka region. The dependences of grain yield and dry matter harvesting on the state of agro-climatic resources (HTC), temperature and precipitation are established. The contrasting weather conditions during the years of research allowed to conduct the most complete assessment of the studied genotypes. The most favorable conditions for the formation of a high yield of green mass of oat were formed in 2020 (Ij=3.76), grain - in 2019 (Ij=1.35). The average degree of positive dependence of green mass yield on the height of oat plants was revealed (r=0.51). The variety of the high-intensity type of the universal direction Medved, promising lines of the mowing direction (178h13 and 245h14) are distinguished.


2021 ◽  
Vol 12 ◽  
Author(s):  
Domen Arnič ◽  
Jožica Gričar ◽  
Jernej Jevšenak ◽  
Gregor Božič ◽  
Georg von Arx ◽  
...  

European beech (Fagus sylvatica L.) adapts to local growing conditions to enhance its performance. In response to variations in climatic conditions, beech trees adjust leaf phenology, cambial phenology, and wood formation patterns, which result in different tree-ring widths (TRWs) and wood anatomy. Chronologies of tree ring width and vessel features [i.e., mean vessel area (MVA), vessel density (VD), and relative conductive area (RCTA)] were produced for the 1960–2016 period for three sites that differ in climatic regimes and spring leaf phenology (two early- and one late-flushing populations). These data were used to investigate long-term relationships between climatic conditions and anatomical features of four quarters of tree-rings at annual and intra-annual scales. In addition, we investigated how TRW and vessel features adjust in response to extreme weather events (i.e., summer drought). We found significant differences in TRW, VD, and RCTA among the selected sites. Precipitation and maximum temperature before and during the growing season were the most important climatic factors affecting TRW and vessel characteristics. We confirmed differences in climate-growth relationships between the selected sites, late flushing beech population at Idrija showing the least pronounced response to climate. MVA was the only vessel trait that showed no relationship with TRW or other vessel features. The relationship between MVA and climatic factors evaluated at intra-annual scale indicated that vessel area in the first quarter of tree-ring were mainly influenced by climatic conditions in the previous growing season, while vessel area in the second to fourth quarters of tree ring width was mainly influenced by maximum temperature and precipitation in the current growing season. When comparing wet and dry years, beech from all sites showed a similar response, with reduced TRW and changes in intra-annual variation in vessel area. Our findings suggest that changes in temperature and precipitation regimes as predicted by most climate change scenarios will affect tree-ring increments and wood structure in beech, yet the response between sites or populations may differ.


2021 ◽  
Author(s):  
Joseph H. Vineis ◽  
Ashley N. Bulseco ◽  
Jennifer L. Bowen

Anthropogenic nitrate amendment to coastal marine sediments can increase rates of heterotrophic mineralization and autotrophic dark carbon fixation (DCF). DCF may be favored in sediments where organic matter is biologically unavailable, leading to a microbial community supported by chemoautotrophy. Niche partitioning among DCF communities and adaptations for nitrate metabolism in coastal marine sediments remain poorly characterized, especially within salt marshes. We used genome-resolved metagenomics, phylogenetics, and comparative genomics to characterize the potential niche space, phylogenetic relationships, and adaptations important to microbial communities within nitrate enriched sediment. We found that nitrate enrichment of sediment from discrete depths between 0-25 cm supported both heterotrophs and chemoautotrophs that use sulfur oxidizing denitrification to drive the Calvin-Benson-Bassham (CBB) or reductive TCA (rTCA) DCF pathways. Phylogenetic reconstruction indicated that the nitrate enriched community represented a small fraction of the phylogenetic diversity contained in coastal marine environmental genomes, while pangenomics revealed close evolutionary and functional relationships with DCF microbes in other oligotrophic environments. These results indicate that DCF can support coastal marine microbial communities and should be carefully considered when estimating the impact of nitrate on carbon cycling in these critical habitats.


1990 ◽  
Vol 14 ◽  
pp. 333-333
Author(s):  
David N. Collins

Parameterisation of relationships between climate and glacier mass balance is of considerable importance in understanding and modelling how temporal variability in climate affects the quantity of perennial snow and ice stored in glaciers, and the runoff from glacierised areas. Influences of year-to-year variations in air temperatures are pertinent in the absence of long records of measured energy balance and in view of predictions of future climate scenarios in terms of temperature. Measurements of temperature and precipitation from several stations in Alpine valleys in the Rhone basin, Wallis, Switzerland have been analysed to indicate trends in climate from 1930 to 1988. Actual measurements of mass balance of Griesgletscher, ablation calculated from runoff and net accumulation estimated from totalising rain gauges for Findelengletscher and Gornergletscher beginning in the late 1960s, and runoff from Aletschgletscher since 1930, were taken as annual glaciological responses to climatic variation. Variables to represent climatic elements and interactions between precipitation and temperature were selected according to degree of correlation with glacier response variables, and climate-glacier response relationships were assessed by multiple regression. Subsets of the data representing the coolest (1972–81) and warmest (1943–52) decades were also analysed to indicate whether relationships amongst climatic variables and between climate and mass balance remain the same under contrasting climatic conditions.Overall, mean summer air temperature variables for the months May through September and June through August provide the highest levels of explanation of variance of ablation and mass balance respectively (75–82%). Addition of a precipitation variable (winter, spring or summer) in multiple regression increases explanation to a maximum of 91%. Spring and summer precipitation variables are negatively correlated with ablation. Positive degree days and temperature-summer snow functions provide alternatives to temperature. Event-based analysis of the coolest and warmest years selected by rank order invokes high precipitation in May and low May-June temperatures and summer snowfall events as significant variables.Relationships between climatic variables indicate that warmer-than-average winters have higher precipitation, but at summer and annual time scales precipitation is slightly negatively associated with temperature. At the decadal level, warmer periods appear to be influenced by increased frequency of continental anticyclonic conditions, in an area subject to both maritime and continental influences. These analyses of climatic variables indicate that summer energy inputs dominate glacier mass balance. Relationships between precipitation and temperature are complex and were changeable during a fluctuation of about 1° over 40 years. Effects of a potentially warmer future on the form of precipitation in spring, summer and autumn are not clear, so estimates of changes of mass balance have been calculated for contrasting precipitation regimes.


2016 ◽  
Vol 77 (2) ◽  
pp. 117-123 ◽  
Author(s):  
Anna Cedro

AbstractThe wild service tree (Sorbus torminalis L.) is a very rare tree species in Poland, where it reaches the north-eastern border of its natural range. The majority of this species’ stands is found in Wielkopolska. This study was aimed at examining the relationships between the growth and climate for trees of the species Sorbus torminalis L. growing in the Wielkopolska National Park and the Pniewy forest district (Wielkopolska). The samples for the analysis were taken from 63 trees. However, taking into account the missing growth rings and the difficult identification of the tree ring borders in sapwood, only ca. 30% of the samples could be synchronised and dated accurately. Applying the classic methods of dendrochronological dating, a 94- year STW chronology was constructed, spanning the years of 1920-2013. The chronology, in turn, was used as a basis for dendroclimatological analyses, including correlation, response function, and pointer years. The climatic data used in the analyses came from the meteorological station in Poznań; providing air temperature and precipitation for a period of 66 years (1948-2013) and 48 years of insolation data (1966-2013). Insolation had the highest negative impact and precipitation had the highest positive impact on the annual growth in May and June. Positive pointer years could be linked to humid months with low insolation during the growing season, while negative pointer years are characterised by deficient precipitation, a large number of sunny hours, and high air temperatures in the summer months.


Sign in / Sign up

Export Citation Format

Share Document