scholarly journals Spatial Epigenome Sequencing at Tissue Scale and Cellular Level

2021 ◽  
Author(s):  
Yanxiang Deng ◽  
Di Zhang ◽  
Yang Liu ◽  
Graham Su ◽  
Archibald Enninful ◽  
...  

AbstractSpatial biology is emerging as a new frontier of biomedical research in development and disease, but currently limited to transcriptome and a panel of proteins. Here we present spatial epigenome profiling for three histone modifications (H3K27me3, H3K4me3, H3K27ac) via next-generation sequencing by combining in-tissue CUT&Tag chemistry and microfluidic deterministic barcoding. Spatial chromatin states in mouse embryos or olfactory bulbs revealed tissue type-specific epigenetic regulations, in concordance with ENCODE reference data, but providing spatially resolved genome-wide profiles at tissue scale. Using fluorescence imaging to identify the tissue pixels (20μm) each containing one nucleus allowed us to extract single-cell epigenomes in situ. Spatial chromatin state profiling in tissue may enable unprecedented opportunities to study epigenetic regulation, cell function and fate decision in normal physiology and pathogenesis.

2021 ◽  
Author(s):  
Yanxiang Deng ◽  
Marek Bartosovic ◽  
Sai Ma ◽  
Di Zhang ◽  
Yang Liu ◽  
...  

Cellular function in tissue is dependent upon the local environment, requiring new methods for spatial mapping of biomolecules and cells in the tissue context. The emergence of spatial transcriptomics has enabled genome-scale gene expression mapping, but it remains elusive to capture spatial epigenetic information of tissue at cellular level and genome scale. Here we report on spatial-ATAC-seq: spatially resolved chromatin accessibility profiling of tissue section via next-generation sequencing by combining in situ Tn5 transposition chemistry and microfluidic deterministic barcoding. Spatial chromatin accessibility profiling of mouse embryos delineated tissue region-specific epigenetic landscapes and identified gene regulators implicated in the central nerve system development. Mapping the accessible genome in human tonsil tissue with 20μm pixel size revealed spatially distinct organization of immune cell types and states in lymphoid follicles and extrafollicular zones. This technology takes spatial biology to a new realm by enabling spatially resolved epigenomics to improve our understanding of cell identity, state, and fate decision in relation to epigenetic underpinnings in development and disease.


2021 ◽  
Author(s):  
Rong Fan ◽  
Yanxiang Deng ◽  
Marek Bartosovic ◽  
Sai Ma ◽  
Di Zhang ◽  
...  

Abstract Cellular function in tissue is dependent upon the local environment, requiring new methods for spatial mapping of biomolecules and cells in the tissue context. The emergence of spatial transcriptomics has enabled genome-scale gene expression mapping, but it remains elusive to capture spatial epigenetic information of tissue at cellular level and genome scale. Here we report on spatial-ATAC-seq: spatially resolved chromatin accessibility profiling of tissue section via next-generation sequencing by combining in situ Tn5 transposition chemistry and microfluidic deterministic barcoding. Spatial chromatin accessibility profiling of mouse embryos delineated tissue region-specific epigenetic landscapes and identified gene regulators implicated in the central nerve system development. Mapping the accessible genome in human tonsil tissue with 20μm pixel size revealed spatially distinct organization of immune cell types and states in lymphoid follicles and extrafollicular zones. This technology takes spatial biology to a new realm by enabling spatially resolved epigenomics to improve our understanding of cell identity, state, and fate decision in relation to epigenetic underpinnings in development and disease.


2021 ◽  
Author(s):  
Donna M. Poscablo ◽  
Atesh K. Worthington ◽  
Stephanie Smith-Berdan ◽  
E. Camilla Forsberg

SUMMARYAge-related morbidity is associated with a decline in hematopoietic stem cell (HSC) function, but the mechanisms of HSC aging remain unclear. We performed heterochronic HSC transplants followed by quantitative analysis of cell reconstitution. While young HSCs outperformed old HSCs in young recipients, young HSCs unexpectedly failed to outcompete the old HSCs of aged recipients. Interestingly, despite substantial enrichment of megakaryocyte progenitors (MkPs) in old mice in situ and reported platelet (Plt) priming with age, transplanted old HSCs were deficient in reconstitution of all lineages, including MkPs and Plts. We therefore performed functional analysis of young and old MkPs. Surprisingly, old MkPs displayed unmistakably greater regenerative capacity compared to young MkPs. Transcriptome analysis revealed putative molecular regulators of old MkP expansion. Collectively, these data demonstrated that aging affects HSCs and megakaryopoiesis in fundamentally different ways: whereas old HSCs functionally decline, MkPs gain expansion capacity upon aging.HIGHLIGHTSFrequencies and total cell numbers of HSCs and MkPs were increased upon agingReconstitution deficit by old HSCs was observed by chimerism and absolute cell numbersYoung HSCs did not have competitive advantage over old HSCs in aged recipient miceOld MkPs display remarkable capacity to engraft, expand, and reconstitute plateletsAging is associated with changes in MkP genome-wide expression signatures


Author(s):  
Steven M. Le Vine ◽  
David L. Wetzel

In situ FT-IR microspectroscopy has allowed spatially resolved interrogation of different parts of brain tissue. In previous work the spectrrscopic features of normal barin tissue were characterized. The white matter, gray matter and basal ganglia were mapped from appropriate peak area measurements from spectra obtained in a grid pattern. Bands prevalent in white matter were mostly associated with the lipid. These included 2927 and 1469 cm-1 due to CH2 as well as carbonyl at 1740 cm-1. Also 1235 and 1085 cm-1 due to phospholipid and galactocerebroside, respectively (Figs 1and2). Localized chemical changes in the white matter as a result of white matter diseases have been studied. This involved the documentation of localized chemical evidence of demyelination in shiverer mice in which the spectra of white matter lacked the marked contrast between it and gray matter exhibited in the white matter of normal mice (Fig. 3).The twitcher mouse, a model of Krabbe’s desease, was also studied. The purpose in this case was to look for a localized build-up of psychosine in the white matter caused by deficiencies in the enzyme responsible for its breakdown under normal conditions.


Author(s):  
H. Lorenz ◽  
C. Engel

Abstract Due to the continuously decreasing cell size of DRAMs and concomitantly diminishing thickness of some insulating layers new failure mechanisms appear which until now had no significance for the cell function. For example high resistance leakage paths between closely spaced conductors can lead to retention problems. These are hard to detect by electrical characterization in a memory tester because the involved currents are in the range of pA. To analyze these failures we exploit the very sensitive passive voltage contrast of the Focused Ion Beam Microscope (FIB). The voltage contrast can further be enhanced by in-situ FIB preparations to obtain detailed information about the failure mechanism. The first part of this paper describes a method to detect a leakage path between a borderless contact on n-diffusion and an adjacent floating gate by passive voltage contrast achieved after FIB circuit modification. In the second part we will demonstrate the localization of a DRAM trench dielectric breakdown. In this case the FIB passive voltage contrast technique is not limited to the localization of the failing trench. We can also obtain the depth of the leakage path by selective insitu etching with XeF2 stopped immediately after a voltage contrast change.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4705
Author(s):  
Julian Lich ◽  
Tino Wollmann ◽  
Angelos Filippatos ◽  
Maik Gude ◽  
Juergen Czarske ◽  
...  

Due to their lightweight properties, fiber-reinforced composites are well suited for large and fast rotating structures, such as fan blades in turbomachines. To investigate rotor safety and performance, in situ measurements of the structural dynamic behaviour must be performed during rotating conditions. An approach to measuring spatially resolved vibration responses of a rotating structure with a non-contact, non-rotating sensor is investigated here. The resulting spectra can be assigned to specific locations on the structure and have similar properties to the spectra measured with co-rotating sensors, such as strain gauges. The sampling frequency is increased by performing consecutive measurements with a constant excitation function and varying time delays. The method allows for a paradigm shift to unambiguous identification of natural frequencies and mode shapes with arbitrary rotor shapes and excitation functions without the need for co-rotating sensors. Deflection measurements on a glass fiber-reinforced polymer disk were performed with a diffraction grating-based sensor system at 40 measurement points with an uncertainty below 15 μrad and a commercial triangulation sensor at 200 measurement points at surface speeds up to 300 m/s. A rotation-induced increase of two natural frequencies was measured, and their mode shapes were derived at the corresponding rotational speeds. A strain gauge was used for validation.


2021 ◽  
Vol 11 (2) ◽  
pp. 620
Author(s):  
Magdalena Dyda ◽  
Agnieszka Laudy ◽  
Przemyslaw Decewicz ◽  
Krzysztof Romaniuk ◽  
Martyna Ciezkowska ◽  
...  

The aim of the presented investigation was to describe seasonal changes of microbial community composition in situ in different biocenoses on historical sandstone of the Northern Pergola in the Museum of King John III’s Palace at Wilanow (Poland). The microbial biodiversity was analyzed by the application of Illumina-based next-generation sequencing methods. The metabarcoding analysis allowed for detecting lichenized fungi taxa with the clear domination of two genera: Lecania and Rhinocladiella. It was also observed that, during winter, the richness of fungal communities increased in the biocenoses dominated by lichens and mosses. The metabarcoding analysis showed 34 bacterial genera, with a clear domination of Sphingomonas spp. across almost all biocenoses. Acidophilic bacteria from Acidobacteriaceae and Acetobacteraceae families were also identified, and the results showed that a significant number of bacterial strains isolated during the summer displayed the ability to acidification in contrast to strains isolated in winter, when a large number of isolates displayed alkalizing activity. Other bacteria capable of nitrogen fixation and hydrocarbon utilization (including aromatic hydrocarbons) as well as halophilic microorganisms were also found. The diversity of organisms in the biofilm ensures its stability throughout the year despite the differences recorded between winter and summer.


2021 ◽  
Vol 22 (8) ◽  
pp. 4201
Author(s):  
Shuai Zhang ◽  
Lang Xie ◽  
Shuqing Zheng ◽  
Baoyue Lu ◽  
Wenjing Tao ◽  
...  

The short-chain dehydrogenases/reductases (SDR) superfamily is involved in multiple physiological processes. In this study, genome-wide identification and comprehensive analysis of SDR superfamily were carried out in 29 animal species based on the latest genome databases. Overall, the number of SDR genes in animals increased with whole genome duplication (WGD), suggesting the expansion of SDRs during evolution, especially in 3R-WGD and polyploidization of teleosts. Phylogenetic analysis indicated that vertebrates SDRs were clustered into five categories: classical, extended, undefined, atypical, and complex. Moreover, tandem duplication of hpgd-a, rdh8b and dhrs13 was observed in teleosts analyzed. Additionally, tandem duplications of dhrs11-a, dhrs7a, hsd11b1b, and cbr1-a were observed in all cichlids analyzed, and tandem duplication of rdh10-b was observed in tilapiines. Transcriptome analysis of adult fish revealed that 93 SDRs were expressed in more than one tissue and 5 in one tissue only. Transcriptome analysis of gonads from different developmental stages showed that expression of 17 SDRs were sexually dimorphic with 11 higher in ovary and 6 higher in testis. The sexually dimorphic expressions of these SDRs were confirmed by in situ hybridization (ISH) and qPCR, indicating their possible roles in steroidogenesis and gonadal differentiation. Taken together, the identification and the expression data obtained in this study contribute to a better understanding of SDR superfamily evolution and functions in teleosts.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jamie W. Robinson ◽  
Richard M. Martin ◽  
Spiridon Tsavachidis ◽  
Amy E. Howell ◽  
Caroline L. Relton ◽  
...  

AbstractGenome-wide association studies (GWAS) have discovered 27 loci associated with glioma risk. Whether these loci are causally implicated in glioma risk, and how risk differs across tissues, has yet to be systematically explored. We integrated multi-tissue expression quantitative trait loci (eQTLs) and glioma GWAS data using a combined Mendelian randomisation (MR) and colocalisation approach. We investigated how genetically predicted gene expression affects risk across tissue type (brain, estimated effective n = 1194 and whole blood, n = 31,684) and glioma subtype (all glioma (7400 cases, 8257 controls) glioblastoma (GBM, 3112 cases) and non-GBM gliomas (2411 cases)). We also leveraged tissue-specific eQTLs collected from 13 brain tissues (n = 114 to 209). The MR and colocalisation results suggested that genetically predicted increased gene expression of 12 genes were associated with glioma, GBM and/or non-GBM risk, three of which are novel glioma susceptibility genes (RETREG2/FAM134A, FAM178B and MVB12B/FAM125B). The effect of gene expression appears to be relatively consistent across glioma subtype diagnoses. Examining how risk differed across 13 brain tissues highlighted five candidate tissues (cerebellum, cortex, and the putamen, nucleus accumbens and caudate basal ganglia) and four previously implicated genes (JAK1, STMN3, PICK1 and EGFR). These analyses identified robust causal evidence for 12 genes and glioma risk, three of which are novel. The correlation of MR estimates in brain and blood are consistently low which suggested that tissue specificity needs to be carefully considered for glioma. Our results have implicated genes yet to be associated with glioma susceptibility and provided insight into putatively causal pathways for glioma risk.


2021 ◽  
pp. 106689692110195
Author(s):  
Grosse Claudia ◽  
Grosse Alexandra

Nuclear protein in testis (NUT) carcinoma represents a highly aggressive, poorly differentiated carcinoma that is genetically defined by rearrangement of NUT gene. The histomorphological appearance ranges from entirely undifferentiated carcinoma to carcinoma with prominent squamous differentiation. NUT carcinoma can display neuroendocrine features. Although it is typically distributed along the midline axis, it may manifest in nonmidline locations. The majority of patients develop rapidly disseminated disease. We illustrate 2 cases of NUT carcinoma, one located in the lung, which closely resembled a neuroendocrine carcinoma, and the other one with assumed lung origin demonstrating metastatic dissemination with diffuse bone involvement, which was clinically first suspected to be a hematological malignancy. Due to its undifferentiated nature, NUT carcinoma may be confused with many entities. NUT immunohistochemistry is considered to be sufficient for the diagnosis. Fluorescence in-situ hybridization analysis and next-generation sequencing are currently used to confirm the diagnosis.


Sign in / Sign up

Export Citation Format

Share Document