scholarly journals Exploring Extreme Signaling Failures in Intracellular Molecular Networks

2021 ◽  
Author(s):  
Mustafa Ozen ◽  
Effat S. Emamian ◽  
Ali Abdi

AbstractDeveloping novel methods for the analysis of intracellular signaling networks is essential for understanding interconnected biological processes that underlie complex human disorders. A fundamental goal of this research is to quantify the vulnerability of a signaling network to the dysfunction of one or multiple molecules, when the dysfunction is defined as an incorrect response to the input signals. In this study, we propose an efficient algorithm to identify the extreme signaling failures that can induce the most detrimental impact on the physiological function of a molecular network. The algorithm basically finds the molecules, or groups of molecules, with the maximum vulnerability, i.e., the highest probability of causing the network failure, when they are dysfunctional. We propose another algorithm that efficiently accounts for signaling feedbacks in this analysis. The algorithms are tested on two experimentally verified ERBB and T cell signaling networks. Surprisingly, results reveal that as the number of concurrently dysfunctional molecules increases, the maximum vulnerability values quickly reach to a plateau following an initial increase. This suggests the specificity of vulnerable molecule (s) involved, as a specific number of faulty molecules cause the most detrimental damage to the function of the network. Increasing a random number of simultaneously faulty molecules does not further deteriorate the function of the network. Such a group of specific molecules whose dysfunction causes the extreme signaling failures can better elucidate the molecular mechanisms underlying the pathogenesis of complex trait disorders, and can offer new insights for the development of novel therapeutics.

Author(s):  
Eleonora Vertecchi ◽  
Angela Iuzzolino ◽  
Erica Salvati

Telomeres are crucial structures that preserve genome stability. Their progressive erosion over rounds of DNA duplication determines senescence of cells and organisms. In a classic view, telomere biology impinges on intracellular signaling pathways regulating DNA damage repair and cell cycle arrest, but new roles of telomeric proteins and transcripts emerge from recent literature. Telomere biology diseases are human disorders associated to telomere attrition. This review wants to overview the recent findings in the field of telomere’s metabolism and to deepen molecular mechanisms of inherited and acquired telomeropathies, explaining new critical connections between telomeric factors and disease pathogenesis


Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 2037
Author(s):  
Trishna Saha ◽  
Hava Gil-Henn

Non-receptor tyrosine kinases (NRTKs) are crucial mediators of intracellular signaling and control a wide variety of processes such as cell division, morphogenesis, and motility. Aberrant NRTK-mediated tyrosine phosphorylation has been linked to various human disorders and diseases, among them cancer metastasis, to which no treatment presently exists. Invasive cancer cells leaving the primary tumor use invadopodia, feet-like structures which facilitate extracellular matrix (ECM) degradation and intravasation, to escape the primary tumor and disseminate into distant tissues and organs during metastasis. A major challenge in metastasis research is to elucidate the molecular mechanisms and signaling pathways underlying invadopodia regulation, as the general belief is that targeting these structures can potentially lead to the eradication of cancer metastasis. Non-receptor tyrosine kinases (NRTKs) play a central role in regulating invadopodia formation and function, but how they coordinate the signaling leading to these processes was not clear until recently. Here, we describe the major NRTKs that rule invadopodia and how they work in concert while keeping an accurate hierarchy to control tumor cell invasiveness and dissemination.


2019 ◽  
Vol 26 (39) ◽  
pp. 6976-6990 ◽  
Author(s):  
Ana María González-Paramás ◽  
Begoña Ayuda-Durán ◽  
Sofía Martínez ◽  
Susana González-Manzano ◽  
Celestino Santos-Buelga

: Flavonoids are phenolic compounds widely distributed in the human diet. Their intake has been associated with a decreased risk of different diseases such as cancer, immune dysfunction or coronary heart disease. However, the knowledge about the mechanisms behind their in vivo activity is limited and still under discussion. For years, their bioactivity was associated with the direct antioxidant and radical scavenging properties of phenolic compounds, but nowadays this assumption is unlikely to explain their putative health effects, or at least to be the only explanation for them. New hypotheses about possible mechanisms have been postulated, including the influence of the interaction of polyphenols and gut microbiota and also the possibility that flavonoids or their metabolites could modify gene expression or act as potential modulators of intracellular signaling cascades. This paper reviews all these topics, from the classical view as antioxidants in the context of the Oxidative Stress theory to the most recent tendencies related with the modulation of redox signaling pathways, modification of gene expression or interactions with the intestinal microbiota. The use of C. elegans as a model organism for the study of the molecular mechanisms involved in biological activity of flavonoids is also discussed.


2020 ◽  
Vol 17 ◽  
Author(s):  
Asma Babar ◽  
Kifayatullah Mengal ◽  
Abdul Hanan Babar ◽  
Shixin Wu ◽  
Mujahid Ali Shah ◽  
...  

: The world highest and largest altitude area is called the Qinghai-Tibetan plateau (QTB), which harbors unique animal and plant species. Mammals that inhabit the higher altitude regions have adapted well to the hypoxic conditions. One of the main stressors at high altitude is hypoxia. Metabolic responses to hypoxia play important roles in cell survival strategies and some diseases. However, the homeostatic alterations that equilibrate variations in the demand and supply of energy to maintain organismal function in a prolonged low O2 environment persist partly understood, making it problematic to differentiate adaptive from maladaptive responses in hypoxia. Tibetans and yaks are two perfect examples innate to the plateau for high altitude adaptation. By the scan of the whole-genome, EPAS1 and EGLN1 were identified as key genes associated with sustained haemoglobin concentration in high altitude mammals for adaptation. The yak is a much more ancient mammal which has existed on QTB longer than humans, it is, therefore, possible that natural selection represented a diverse group of genes/pathways in yaks. Physiological characteristics are extremely informative in revealing molecular networks associated with inherited adaptation, in addition to the whole-genome adaptive changes at the DNA sequence level. Gene-expression can be changed by a variety of signals originating from the environment, and hypoxia is the main factor amongst them. The hypoxia-inducible factors (HIF-1α and EPAS1/HIF-2α) are the main regulators of oxygen in homeostasis which play a role as maestro regulators of adaptation in hypoxic reaction of molecular mechanisms. (Vague) The basis of this review is to present recent information regarding the molecular mechanism involved in hypoxia that regulates candidate genes and proteins. Many transcriptional responses toward hypoxia are facilitated by HIFs that change the number of gene expressions and help in angiogenesis, erythropoiesis, metabolic reprogramming and metastasis. HIFs also activate several signals highlighting a strong association between hypoxia, the misfolded proteins’ accumulation in the endoplasmic reticulum in stress and activation of unfolded protein response (UPR). It was observed that at high-altitude, pregnancies yield a low birth weight ∼100 g per1000 m of the climb. (Vague) It may involve variation in the events of energy-demanding, like protein synthesis. Prolonged hypobaric hypoxia causes placental ER stress, which in turn, moderates protein synthesis and reduces proliferation. Further, Cardiac hypertrophy by cytosolic Ca2+ raises and Ca2+/calmodulin, calcineurin stimulation, NF-AT3 pathway might be caused by an imbalance in Sarcoplasmic reticulum ER Ca2, might be adaptive in beginning but severe later.


Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 308
Author(s):  
Marion Buffard ◽  
Aurélien Naldi ◽  
Gilles Freiss ◽  
Marcel Deckert ◽  
Ovidiu Radulescu ◽  
...  

Spleen tyrosine kinase (SYK) can behave as an oncogene or a tumor suppressor, depending on the cell and tissue type. As pharmacological SYK inhibitors are currently evaluated in clinical trials, it is important to gain more information on the molecular mechanisms underpinning these opposite roles. To this aim, we reconstructed and compared its signaling networks using phosphoproteomic data from breast cancer and Burkitt lymphoma cell lines where SYK behaves as a tumor suppressor and promoter. Bioinformatic analyses allowed for unveiling the main differences in signaling pathways, network topology and signal propagation from SYK to its potential effectors. In breast cancer cells, the SYK target-enriched signaling pathways included intercellular adhesion and Hippo signaling components that are often linked to tumor suppression. In Burkitt lymphoma cells, the SYK target-enriched signaling pathways included molecules that could play a role in SYK pro-oncogenic function in B-cell lymphomas. Several protein interactions were profoundly rewired in the breast cancer network compared with the Burkitt lymphoma network. These data demonstrate that proteomic profiling combined with mathematical network modeling allows untangling complex pathway interplays and revealing difficult to discern interactions among the SYK pathways that positively and negatively affect tumor formation and progression.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
H Inazumi ◽  
K Kuwahara ◽  
Y Kuwabara ◽  
Y Nakagawa ◽  
H Kinoshita ◽  
...  

Abstract Background In the development of heart failure, pathological intracellular signaling reactivates fetal cardiac genes, which leads to maladaptive remodeling and cardiac dysfunction. We previously reported that a transcriptional repressor, neuron restrictive silencer factor (NRSF) represses fetal cardiac genes and maintains normal cardiac function under normal conditions, while hypertrophic stimuli de-repress this NRSF mediated repression via activation of CaMKII. Molecular mechanisms by which NRSF maintains cardiac systolic function remains to be determined, however. Purpose To elucidate how NRSF maintains normal cardiac homeostasis and identify the novel therapeutic targets for heart failure. Methods and results We generated cardiac-specific NRSF knockout mice (NRSF cKO), and found that these NRSF cKO showed cardiac dysfunction and premature deaths accompanied with lethal arrhythmias, as was observed in our previously reported cardiac-specific dominant-negative mutant of NRSF transgenic mice (dnNRSF-Tg). By cDNA microarray analysis of dnNRSF-Tg and NRSF-cKO, we identified that expression of Gnao1 gene encoding Gαo, a member of inhibitory G proteins, was commonly increased in ventricles of both types of mice. ChIP-seq analysis, reporter assay and electrophoretic mobility shift assay identified that NRSF transcriptionally regulates Gnao1 gene expression. Genetic Knockdown of Gαo in dnNRSF-Tg and NRSF-cKO by crossing these mice with Gnao1 knockout mice ameliorated the reduced systolic function, increased arrhythmogenicity and reduced survival rates. Transgenic mice expressing a human GNAO1 in their hearts (GNAO1-Tg) showed progressive cardiac dysfunction with cardiac dilation. Ventricles obtained from GNAO1-Tg have increased phosphorylation level of CaMKII and increased expression level of endogenous mouse Gnao1 gene. These data suggest that increased cardiac expression of Gαo is sufficient to induce pathological Ca2+-dependent signaling and cardiac dysfunction, and that Gαo forms a positive regulatory circuit with CaMKII and NRSF. Electrophysiological analysis in ventricular myocytes of dnNRSF-Tg revealed that impaired Ca2+ handling via alterations in localized L-type calcium channel (LTCC) activities; decreased T-tubular and increased surface sarcolemmal LTCC activities, underlies Gαo-mediated cardiac dysfunction. Furthermore, we also identified increased expression of Gαo in ventricles of two different heart failure mice models, mice with transverse aortic constriction and mice carrying a mutant cardiac troponin T, and confirmed that genetic reduction of Gαo prevented the progression of cardiac dysfunction in both types of mice. Conclusions Increased expression of Gαo, induced by attenuation of NRSF-mediated repression forms a pathological circuit via activation of CaMKII. This circuit exacerbates cardiac remodeling and progresses heart failure by impairing Ca2+ homeostasis. Gαo is a potential therapeutic target for heart failure. Figure 1 Funding Acknowledgement Type of funding source: Public grant(s) – National budget only. Main funding source(s): Grants-in –Aid for Scientific Research from the Japan Society for the Promotion of Science


Biomolecules ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 476 ◽  
Author(s):  
Chia-Jung Li ◽  
Pei-Yi Chu ◽  
Giou-Teng Yiang ◽  
Meng-Yu Wu

The transforming growth factor-β (TGF-β) signaling pathway plays multiple regulatory roles in the tumorigenesis and development of cancer. TGF-β can inhibit the growth and proliferation of epithelial cells and induce apoptosis, thereby playing a role in inhibiting breast cancer. Therefore, the loss of response in epithelial cells that leads to the inhibition of cell proliferation due to TGF-β is a landmark event in tumorigenesis. As tumors progress, TGF-β can promote tumor cell invasion, metastasis, and drug resistance. At present, the above-mentioned role of TGF-β is related to the interaction of multiple signaling pathways in the cell, which can attenuate or abolish the inhibition of proliferation and apoptosis-promoting effects of TGF-β and enhance its promotion of tumor progression. This article focuses on the molecular mechanisms through which TGF-β interacts with multiple intracellular signaling pathways in tumor progression and the effects of these interactions on tumorigenesis.


2006 ◽  
Vol 84 (3-4) ◽  
pp. 287-297 ◽  
Author(s):  
Fernand Gobeil ◽  
Audrey Fortier ◽  
Tang Zhu ◽  
Michela Bossolasco ◽  
Martin Leduc ◽  
...  

G-protein-coupled receptors (GPCRs) comprise a wide family of monomeric heptahelical glycoproteins that recognize a broad array of extracellular mediators including cationic amines, lipids, peptides, proteins, and sensory agents. Thus far, much attention has been given towards the comprehension of intracellular signaling mechanisms activated by cell membrane GPCRs, which convert extracellular hormonal stimuli into acute, non-genomic (e.g., hormone secretion, muscle contraction, and cell metabolism) and delayed, genomic biological responses (e.g., cell division, proliferation, and apoptosis). However, with respect to the latter response, there is compelling evidence for a novel intracrine mode of genomic regulation by GPCRs that implies either the endocytosis and nuclear translocation of peripheral-liganded GPCR and (or) the activation of nuclearly located GPCR by endogenously produced, nonsecreted ligands. A noteworthy example of the last scenario is given by heptahelical receptors that are activated by bioactive lipoids (e.g., PGE2 and PAF), many of which may be formed from bilayer membranes including those of the nucleus. The experimental evidence for the nuclear localization and signalling of GPCRs will be reviewed. We will also discuss possible molecular mechanisms responsible for the atypical compartmentalization of GPCRs at the cell nucleus, along with their role in gene expression.


2009 ◽  
Vol 20 (1) ◽  
pp. 146-152 ◽  
Author(s):  
Michelle S. Steen ◽  
Marvin E. Adams ◽  
Yan Tesch ◽  
Stanley C. Froehner

Duchenne muscular dystrophy (DMD) and other types of muscular dystrophies are caused by the loss or alteration of different members of the dystrophin protein complex. Understanding the molecular mechanisms by which dystrophin-associated protein abnormalities contribute to the onset of muscular dystrophy may identify new therapeutic approaches to these human disorders. By examining gene expression alterations in mouse skeletal muscle lacking α-dystrobrevin (Dtna−/−), we identified a highly significant reduction of the cholesterol trafficking protein, Niemann-Pick C1 (NPC1). Mutations in NPC1 cause a progressive neurodegenerative, lysosomal storage disorder. Transgenic expression of NPC1 in skeletal muscle ameliorates muscular dystrophy in the Dtna−/− mouse (which has a relatively mild dystrophic phenotype) and in the mdx mouse, a model for DMD. These results identify a new compensatory gene for muscular dystrophy and reveal a potential new therapeutic target for DMD.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
M. Vailati-Riboni ◽  
D. N. Coleman ◽  
V. Lopreiato ◽  
A. Alharthi ◽  
R. E. Bucktrout ◽  
...  

Abstract Background We aimed to characterize the protective effects and the molecular mechanisms of action of a Saccharomyces cerevisiae fermentation product (NTK) in response to a mastitis challenge. Eighteen mid-lactation multiparous Holstein cows (n = 9/group) were fed the control diet (CON) or CON supplemented with 19 g/d NTK for 45 d (phase 1, P1) and then infected in the right rear quarter with 2500 CFU of Streptococcus uberis (phase 2, P2). After 36-h, mammary gland and liver biopsies were collected and antibiotic treatment started until the end of P2 (9 d post challenge). Cows were then followed until day 75 (phase 3, P3). Milk yield (MY) and dry matter intake (DMI) were recorded daily. Milk samples for somatic cell score were collected, and rectal and udder temperature, heart and respiration rate were recorded during the challenge period (P2) together with blood samples for metabolite and immune function analyses. Data were analyzed by phase using the PROC MIXED procedure in SAS. Biopsies were used for transcriptomic analysis via RNA-sequencing, followed by pathway analysis. Results DMI and MY were not affected by diet in P1, but an interaction with time was recorded in P2 indicating a better recovery from the challenge in NTK compared with CON. NTK reduced rectal temperature, somatic cell score, and temperature of the infected quarter during the challenge. Transcriptome data supported these findings, as NTK supplementation upregulated mammary genes related to immune cell antibacterial function (e.g., CATHL4, NOS2), epithelial tissue protection (e.g. IL17C), and anti-inflammatory activity (e.g., ATF3, BAG3, IER3, G-CSF, GRO1, ZFAND2A). Pathway analysis indicated upregulation of tumor necrosis factor α, heat shock protein response, and p21 related pathways in the response to mastitis in NTK cows. Other pathways for detoxification and cytoprotection functions along with the tight junction pathway were also upregulated in NTK-fed cows. Conclusions Overall, results highlighted molecular networks involved in the protective effect of NTK prophylactic supplementation on udder health during a subclinical mastitic event.


Sign in / Sign up

Export Citation Format

Share Document