scholarly journals Mild and severe SARS-CoV-2 infection induces respiratory and intestinal microbiome changes in the K18-hACE2 transgenic mouse model

2021 ◽  
Author(s):  
Brittany Seibert ◽  
C. Joaquín Cáceres ◽  
Stivalis Cardenas-Garcia ◽  
Silvia Carnaccini ◽  
Ginger Geiger ◽  
...  

ABSTRACTTransmission of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in millions of deaths and declining economies around the world. K18-hACE2 mice develop disease resembling severe SARS-CoV-2 infection in a virus dose-dependent manner. The relationship between SARS-CoV-2 and the intestinal or respiratory microbiome is not fully understood. In this context, we characterized the cecal and lung microbiome of SARS-CoV-2 challenged K18-hACE2 transgenic mice in the presence or absence of treatment with the Mpro inhibitor GC376. Cecum microbiome showed decreased Shannon and Inv Simpson diversity index correlating with SARS-CoV-2 infection dosage and a difference of Bray-Curtis dissimilarity distances among control and infected mice. Bacterial phyla such as Firmicutes, particularly Lachnospiraceae and Oscillospiraceae, were significantly less abundant while Verrucomicrobiota, particularly the family Akkermansiaceae, were increasingly more prevalent during peak infection in mice challenged with a high virus dose. In contrast to the cecal microbiome, the lung microbiome showed similar microbial diversity among the control, low and high challenge virus groups, independent of antiviral treatment. Bacterial phyla in the lungs such as Bacteroidota decreased while Firmicutes and Proteobacteria were significantly enriched in mice challenged with a high dose of SARS-CoV-2. In summary, we identified changes in the cecal and lung microbiome of K18-hACE2 mice with severe clinical signs of SARS-CoV-2 infection.IMPORTANCEThe COVID-19 pandemic has resulted in millions of deaths. The host’s respiratory and intestinal microbiome can affect directly or indirectly the immune system during viral infections. We characterized the cecal and lung microbiome in a relevant mouse model challenged with a low and high dose of SARS-CoV-2 in the presence or absence of an antiviral Mpro inhibitor, GC376. Decreased microbial diversity and taxonomic abundances of the phyla Firmicutes, particularly Lachnospiraceae, correlating with infection dosage was observed in the cecum. In addition, microbes within the family Akkermansiaceae were increasingly more prevalent during peak infection, which is observed in other viral infections. The lung microbiome showed similar microbial diversity to the control, independent of antiviral treatment. Decreased Bacteroidota and increased Firmicutes and Proteobacteria were observed in the lungs in a virus dose-dependent manner. These studies add to a better understanding of the complexities associated with the intestinal microbiome during respiratory infections.

2020 ◽  
Vol 20 (4) ◽  
pp. 423-432 ◽  
Author(s):  
Imre Kovesdi ◽  
Tibor Bakacs

: Viral interference, originally, referred to a state of temporary immunity, is a state whereby infection with a virus limits replication or production of a second infecting virus. However, replication of a second virus could also be dominant over the first virus. In fact, dominance can alternate between the two viruses. Expression of type I interferon genes is many times upregulated in infected epithelial cells. Since the interferon system can control most, if not all, virus infections in the absence of adaptive immunity, it was proposed that viral induction of a nonspecific localized temporary state of immunity may provide a strategy to control viral infections. Clinical observations also support such a theory, which gave credence to the development of superinfection therapy (SIT). SIT is an innovative therapeutic approach where a non-pathogenic virus is used to infect patients harboring a pathogenic virus. : For the functional cure of persistent viral infections and for the development of broad- spectrum antivirals against emerging viruses a paradigm shift was recently proposed. Instead of the virus, the therapy should be directed at the host. Such a host-directed-therapy (HDT) strategy could be the activation of endogenous innate immune response via toll-like receptors (TLRs). Superinfection therapy is such a host-directed-therapy, which has been validated in patients infected with two completely different viruses, the hepatitis B (DNA), and hepatitis C (RNA) viruses. SIT exerts post-infection interference via the constant presence of an attenuated non-pathogenic avian double- stranded (ds) RNA viral vector which boosts the endogenous innate (IFN) response. SIT could, therefore, be developed into a biological platform for a new “one drug, multiple bugs” broad-spectrum antiviral treatment approach.


2020 ◽  
Vol 10 (4) ◽  
pp. 488-494 ◽  
Author(s):  
Venugopal Singamaneni ◽  
Sudheer Kumar Dokuparthi ◽  
Nilanjana Banerjee ◽  
Ashish Kumar ◽  
Tulika Chakrabarti

Background: Emblica officinalis Gaertn. which belongs to the family Euphorbiaceae, Terminalia chebula Retz. and Terminalia bellerica Roxb. belong to the family Combretaceae. These are well known medicinal plants with phytochemical reservoir of great medicinal values and possess a vast ethnomedical history. Objective: The aim of the present study is to isolation of major compounds and to evaluate antimutagenic potential of the ethanol extracts of these plants. Methods: The dried fruits of E. officinalis, T. bellirica and T. chebula were powdered and extracted with 95% ethanol. The ethyl acetate portions were chromatographed over silica gel to isolate major compounds. Antimutagenic activity was determined by Ames test using TA98 and TA100 strains of Salmonella typhimurium. Results: Two major known compounds, gallic acid and ellagic acid were isolated from the dried fruits of Emblica officinalis, Terminalia chebula and T. bellirica. All the three extracts counteracted the mutagenicity induced by different genotoxic compounds in a dose dependent manner. Conclusion: This study showed that ethyl acetate portion of three extracts contain two major compounds, gallic acid and ellagic acid which might be responsible for potent antimutagenic activity of these extracts.


Nutrients ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1981 ◽  
Author(s):  
Qiufen Mo ◽  
Aikun Fu ◽  
Lingli Deng ◽  
Minjie Zhao ◽  
Yang Li ◽  
...  

Glycerol monolaurate (GML) has potent antimicrobial and anti-inflammatory activities. The present study aimed to assess the dose-dependent antimicrobial-effects of GML on the gut microbiota, glucose and lipid metabolism and inflammatory response in C57BL/6 mice. Mice were fed on diets supplemented with GML at dose of 400, 800 and 1600 mg kg−1 for 4 months, respectively. Results showed that supplementation of GML, regardless of the dosages, induced modest body weight gain without affecting epididymal/brown fat pad, lipid profiles and glycemic markers. A high dose of GML (1600 mg kg−1) showed positive impacts on the anti-inflammatory TGF-β1 and IL-22. GML modulated the indigenous microbiota in a dose-dependent manner. It was found that 400 and 800 mg kg−1 GML improved the richness of Barnesiella, whereas a high dosage of GML (1600 mg kg−1) significantly increased the relative abundances of Clostridium XIVa, Oscillibacter and Parasutterella. The present work indicated that GML could upregulate the favorable microbial taxa without inducing systemic inflammation and dysfunction of glucose and lipid metabolism.


2011 ◽  
Vol 56 (1) ◽  
pp. 148-153 ◽  
Author(s):  
Marisa H. Miceli ◽  
Stella M. Bernardo ◽  
T. S. Neil Ku ◽  
Carla Walraven ◽  
Samuel A. Lee

ABSTRACTInfections and thromboses are the most common complications associated with central venous catheters. Suggested strategies for prevention and management of these complications include the use of heparin-coated catheters, heparin locks, and antimicrobial lock therapy. However, the effects of heparin onCandida albicansbiofilms and planktonic cells have not been previously studied. Therefore, we sought to determine thein vitroeffect of a heparin sodium preparation (HP) on biofilms and planktonic cells ofC. albicans. Because HP contains two preservatives, methyl paraben (MP) and propyl paraben (PP), these compounds and heparin sodium without preservatives (Pure-H) were also tested individually. The metabolic activity of the mature biofilm after treatment was assessed using XTT [2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide] reduction and microscopy. Pure-H, MP, and PP caused up to 75, 85, and 60% reductions of metabolic activity of the mature preformedC. albicansbiofilms, respectively. Maximal efficacy against the mature biofilm was observed with HP (up to 90%) compared to the individual compounds (P< 0.0001). Pure-H, MP, and PP each inhibitedC. albicansbiofilm formation up to 90%. A complete inhibition of biofilm formation was observed with HP at 5,000 U/ml and higher. When tested against planktonic cells, each compound inhibited growth in a dose-dependent manner. These data indicated that HP, MP, PP, and Pure-H havein vitroantifungal activity againstC. albicansmature biofilms, formation of biofilms, and planktonic cells. Investigation of high-dose heparin-based strategies (e.g., heparin locks) in combination with traditional antifungal agents for the treatment and/or prevention ofC. albicansbiofilms is warranted.


Toxins ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 237
Author(s):  
András Szabó ◽  
Szabolcs Nagy ◽  
Omeralfaroug Ali ◽  
Zsolt Gerencsér ◽  
Miklós Mézes ◽  
...  

A 65-day study was undertaken to test the effects of two doses (10 and 20 mg/kg) of dietary fumonisin Bs (FB) on the rabbit male reproduction system. Body and testicular weight was not affected by the intoxication, neither the fatty acid composition of the testicular total phospholipids; the testis histological analysis failed to reveal any toxic effect. The FBs increased the testicular concentration and activity of reduced glutathione and glutathione peroxidase and decreased initial phase lipid peroxidation (conjugated dienes and trienes) in a dose dependent manner. Sperm morphology and chromatin condensation were monitored on Feulgen-stained smears. No significant differences were observed between the treatment groups and between sampling time points. The live cell ratio in the sperm (as assessed with flow cytometry) was not different among groups at any of the five sampling timepoints and was also identical within groups. Similarly, the spermatozoa membrane lipid profile was also identical in all three groups after the total intoxication period. In summary, it was demonstrated that FBs in an unrealistic and unjustified high dose still do not exert any drastic harmful effect on the leporine, male reproduction system, meanwhile slightly augmenting testicular antioxidant response.


2021 ◽  
pp. 1-13
Author(s):  
Shu Wang ◽  
Xiang Li ◽  
Yue Yang ◽  
Jingping Xie ◽  
Mingyue Liu ◽  
...  

Abstract Objective: We aimed to evaluate the association between coffee and/or tea consumption and breast cancer (BC) risk among premenopausal and postmenopausal women and to conduct a network meta-analysis. Design: Systematic review and network meta-analysis. Setting: We conducted a systematic review of electronic publications in the last 30 years to identify case–control studies or prospective cohort studies that evaluated the effects of coffee and tea intake. Results: Forty-five studies that included more than 3 323 288 participants were eligible for analysis. Network meta-analysis was performed to determine the effects of coffee and/or tea consumption on reducing BC risk in a dose-dependent manner and differences in coffee/tea type, menopause status, hormone receptor and the BMI in subgroup and meta-regression analyses. According to the first pairwise meta-analysis, low-dose coffee intake and high-dose tea intake may exhibit efficacy in preventing ER(estrogen receptor)− BC, particularly in postmenopausal women. Then, we performed another pairwise and network meta-analysis and determined that the recommended daily doses were 2–3 cups/d of coffee or ≥5 cups/d of tea, which contained a high concentration of caffeine, particularly in postmenopausal women. Conclusions: Coffee and tea consumption is not associated with a reduction in the overall BC risk in postmenopausal women and is associated with a potentially lower risk of ER− BC. And the highest recommended dose is 2–3 cups of coffee/d or ≥5 cups of tea/d. They are potentially useful dietary protectants for preventing BC.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Lydia Ntari ◽  
Christoforos Nikolaou ◽  
Ksanthi Kranidioti ◽  
Dimitra Papadopoulou ◽  
Eleni Christodoulou-Vafeiadou ◽  
...  

Abstract Background New medications for Rheumatoid Arthritis (RA) have emerged in the last decades, including Disease Modifying Antirheumatic Drugs (DMARDs) and biologics. However, there is no known cure, since a significant proportion of patients remain or become non-responders to current therapies. The development of new mode-of-action treatment schemes involving combination therapies could prove successful for the treatment of a greater number of RA patients. Methods We investigated the effect of the Tyrosine Kinase inhibitors (TKIs) dasatinib and bosutinib, on the human TNF-dependent Tg197 arthritis mouse model. The inhibitors were administered either as a monotherapy or in combination with a subtherapeutic dose of anti-hTNF biologics and their therapeutic effect was assessed clinically, histopathologically as well as via gene expression analysis and was compared to that of an efficient TNF monotherapy. Results Dasatinib and, to a lesser extent, bosutinib inhibited the production of TNF and proinflammatory chemokines from arthritogenic synovial fibroblasts. Dasatinib, but not bosutinib, also ameliorated significantly and in a dose-dependent manner both the clinical and histopathological signs of Tg197 arthritis. Combination of dasatinib with a subtherapeutic dose of anti-hTNF biologic agents, resulted in a synergistic inhibitory effect abolishing all arthritis symptoms. Gene expression analysis of whole joint tissue of Tg197 mice revealed that the combination of dasatinib with a low subtherapeutic dose of Infliximab most efficiently restores the pathogenic gene expression profile to that of the healthy state compared to either treatment administered as a monotherapy. Conclusion Our findings show that dasatinib exhibits a therapeutic effect in TNF-driven arthritis and can act in synergy with a subtherapeutic anti-hTNF dose to effectively treat the clinical and histopathological signs of the pathology. The combination of dasatinib and anti-hTNF exhibits a distinct mode of action in restoring the arthritogenic gene signature to that of a healthy profile. Potential clinical applications of combination therapies with kinase inhibitors and anti-TNF agents may provide an interesting alternative to high-dose anti-hTNF monotherapy and increase the number of patients responding to treatment.


2005 ◽  
Vol 32 (7) ◽  
pp. 643 ◽  
Author(s):  
Xinli Li ◽  
Tamás Borsics ◽  
H. Michael Harrington ◽  
David A. Christopher

We have isolated and characterised AtCNGC10, one of the 20 members of the family of cyclic nucleotide (CN)-gated and calmodulin (CaM)-regulated channels (CNGCs) from Arabidopsis thaliana (L.) Heynh. AtCNGC10 bound CaM in a C-terminal subregion that contains a basic amphiphillic structure characteristic of CaM-binding proteins and that also overlaps with the predicted CN-binding domain. AtCNGC10 is insensitive to the broad-range K+ channel blocker, tetraethylammonium, and lacks a typical K+-signature motif. However, AtCNGC10 complemented K+ channel uptake mutants of Escherichia coli (LB650), yeast (Saccharomyces cerevisiae CY162) and Arabidopsis (akt1-1). Sense 35S-AtCNGC10 transformed into the Arabidopsis akt1-1 mutant, grew 1.7-fold better on K+-limited medium relative to the vector control. Coexpression of CaM and AtCNGC10 in E. coli showed that Ca2+ / CaM inhibited cell growth by 40%, while cGMP reversed the inhibition by Ca2+ / CaM, in a AtCNGC10-dependent manner. AtCNGC10 did not confer tolerance to Cs+ in E. coli, however, it confers tolerance to toxic levels of Na+ and Cs+ in the yeast K+ uptake mutant grown on low K+ medium. Antisense AtCNGC10 plants had 50% less potassium than wild type Columbia. Taken together, the studies from three evolutionarily diverse species demonstrated a role for the CaM-binding channel, AtCNGC10, in mediating the uptake of K+ in plants.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 386
Author(s):  
Tung-Hu Tsai ◽  
Yu-Jen Chen ◽  
Li-Ying Wang ◽  
Chen-Hsi Hsieh

This study was performed to evaluate the interaction between conventional or high-dose radiotherapy (RT) and the pharmacokinetics (PK) of regorafenib in concurrent or sequential regimens for the treatment of hepatocellular carcinoma. Concurrent and sequential in vitro and in vivo studies of irradiation and regorafenib were designed. The interactions of RT and regorafenib in vitro were examined in the human hepatoma Huh-7, HA22T and Hep G2 cell lines. The RT–PK phenomenon and biodistribution of regorafenib under RT were confirmed in a free-moving rat model. Regorafenib inhibited the viability of Huh-7 cells in a dose-dependent manner. Apoptosis in Huh-7 cells was enhanced by RT followed by regorafenib treatment. In the concurrent regimen, RT decreased the area under the concentration versus time curve (AUC)regorafenib by 74% (p = 0.001) in the RT2 Gy × 3 fraction (f’x) group and by 69% (p = 0.001) in the RT9 Gy × 3 f’x group. The AUCregorafenib was increased by 182.8% (p = 0.011) in the sequential RT2Gy × 1 f’x group and by 213.2% (p = 0.016) in the sequential RT9Gy × 1 f’x group. Both concurrent regimens, RT2Gy × 3 f’x and RT9Gy × 3 f’x, clearly decreased the biodistribution of regorafenib in the heart, liver, lung, spleen and kidneys, compared to the control (regorafenib × 3 d) group. The concurrent regimens, both RT2Gy × 3 f’x and RT9Gy × 3 f’x, significantly decreased the biodistribution of regorafenib, compared with the control group. The PK of regorafenib can be modulated both by off-target irradiation and stereotactic body radiation therapy (SBRT).


2021 ◽  
Vol 9 (7) ◽  
pp. 1473
Author(s):  
Ani Saghatelyan ◽  
Armine Margaryan ◽  
Hovik Panosyan ◽  
Nils-Kåre Birkeland

The microbial diversity of high-altitude geothermal springs has been recently assessed to explore their biotechnological potential. However, little is known regarding the microbiota of similar ecosystems located on the Armenian Highland. This review summarizes the known information on the microbiota of nine high-altitude mineralized geothermal springs (temperature range 25.8–70 °C and pH range 6.0–7.5) in Armenia and Nagorno-Karabakh. All these geothermal springs are at altitudes ranging from 960–2090 m above sea level and are located on the Alpide (Alpine–Himalayan) orogenic belt, a seismically active region. A mixed-cation mixed-anion composition, with total mineralization of 0.5 mg/L, has been identified for these thermal springs. The taxonomic diversity of hot spring microbiomes has been examined using culture-independent approaches, including denaturing gradient gel electrophoresis (DGGE), 16S rRNA gene library construction, 454 pyrosequencing, and Illumina HiSeq. The bacterial phyla Proteobacteria, Bacteroidetes, Cyanobacteria, and Firmicutes are the predominant life forms in the studied springs. Archaea mainly include the phyla Euryarchaeota, Crenarchaeota, and Thaumarchaeota, and comprise less than 1% of the prokaryotic community. Comparison of microbial diversity in springs from Karvachar with that described for other terrestrial hot springs revealed that Proteobacteria, Bacteroidetes, Actinobacteria, and Deinococcus–Thermus are the common bacterial groups in terrestrial hot springs. Contemporaneously, specific bacterial and archaeal taxa were observed in different springs. Evaluation of the carbon, sulfur, and nitrogen metabolism in these hot spring communities has revealed diversity in terms of metabolic activity. Temperature seems to be an important factor in shaping the microbial communities of these springs. Overall, the diversity and richness of the microbiota are negatively affected by increasing temperature. Other abiotic factors, including pH, mineralization, and geological history, also impact the structure and function of the microbial community. More than 130 bacterial and archaeal strains (Bacillus, Geobacillus, Parageobacillus, Anoxybacillus, Paenibacillus, Brevibacillus Aeribacillus, Ureibacillus, Thermoactinomyces, Sporosarcina, Thermus, Rhodobacter, Thiospirillum, Thiocapsa, Rhodopseudomonas, Methylocaldum, Desulfomicrobium, Desulfovibrio, Treponema, Arcobacter, Nitropspira, and Methanoculleus) have been reported, some of which may be representative of novel species (sharing 91–97% sequence identity with their closest matches in GenBank) and producers of thermozymes and biomolecules with potential biotechnological applications. Whole-genome shotgun sequencing of T. scotoductus K1, as well as of the potentially new Treponema sp. J25 and Anoxybacillus sp. K1, were performed. Most of the phyla identified by 16S rRNA were also identified using metagenomic approaches. Detailed characterization of thermophilic isolates indicate the potential of the studied springs as a source of biotechnologically valuable microbes and biomolecules.


Sign in / Sign up

Export Citation Format

Share Document