scholarly journals Intestinal function and transit associate with gut microbiota dysbiosis in cystic fibrosis

Author(s):  
Ryan Marsh ◽  
Helen Gavillet ◽  
Liam Hanson ◽  
Christabella Ng ◽  
Mandisa Mitchell-Whyte ◽  
...  

AbstractBackgroundMost people with cystic fibrosis (pwCF) suffer from gastrointestinal symptoms and are at risk of gut complications. Gut microbiota dysbiosis is apparent within the CF population across all age groups, with evidence linking dysbiosis to intestinal inflammation and other markers of health. This pilot study aimed to investigate the potential relationships between the gut microbiota and gastrointestinal physiology, transit, and health.Study DesignFaecal samples from 10 pwCF and matched controls were subject to 16S rRNA sequencing. Results were combined with clinical metadata and MRI metrics of gut function to investigate relationships.ResultspwCF had significantly reduced microbiota diversity compared to controls. Microbiota compositions were significantly different, suggesting remodelling of core and rarer satellite taxa in CF. Dissimilarity between groups was driven by a variety of taxa, including Escherichia coli, Bacteroides spp., Clostridium spp., and Faecalibacterium prausnitzii. The core taxa were explained primarily by CF disease, whilst the satellite taxa were associated with pulmonary antibiotic usage, CF disease, and gut function metrics. Species-specific ordination biplots revealed relationships between taxa and the clinical or MRI-based variables observed.ConclusionsAlterations in gut function and transit resultant of CF disease are associated with the gut microbiota composition, notably the satellite taxa. Delayed transit in the small intestine might allow for the expansion of satellite taxa resulting in potential downstream consequences for core community function in the colon.HighlightsFaecal microbiota significantly differs between pwCF and healthy controlsKey SCFA producers contributed to microbiota dissimilarity between groupsPulmonary antibiotic treatment heavily impacted gut microbiotaIntestinal physiology and transit impacted satellite microbiota composition

Author(s):  
Qian Huang ◽  
Yi Yang ◽  
Vladimir Tolstikov ◽  
Michael A. Kiebish ◽  
Jonas F Ludvigsson ◽  
...  

ABSTRACTObjectiveCeliac disease (CD) is an immune-mediated disease characterized by small intestinal inflammation. CD is associated with HLA-DQ2 and HLA-DQ8 haplotypes, however, genetics alone cannot explain the increasing incidence rates. The main goal of this study was to determine the role of the gut microbiota in CD pathogenesis in the first five years of life.DesignWe conducted a longitudinal study focusing on three developmental phases of the gut microbiota (ages 1, 2.5 and 5 years). The fecal samples were obtained from 16 children who developed CD and 16 matched controls. We used 16S sequencing combined with functional analysis, flow cytometry, immunoglobulin A (IgA) sequencing (IgA-seq), and plasma metabolomics to determine a microbial link to CD pathogenesis.ResultsWe identified a distinct gut microbiota composition in CD progressors (CDP, children who developed CD during or after their gut microbiota were sampled) in each developmental phase. Pathogenesis and inflammation-related microbial pathways were enriched in CDP. Moreover, they had significantly more IgA coated bacteria and the IgA targets were significantly different compared to controls. Proinflammatory and pathogenesis-related metabolic pathways were enriched in CDP. Further, we identified inflammatory metabolites, particularly microbiota-derived taurodeoxycholic acid (TDCA) as increased in CDP.ConclusionOur study defines an inflammatory gut microbiota for the CDP including its composition, function, IgA response and related plasma metabolites. The inflammatory nature of CD gut microbiota during development is potentially related to the onset of the disease. Targeting inflammatory bacteria in this critical window could affect the pathogenesis and prognosis of CD.Significance of this studyWhat is already known on this subject?Celiac Disease (CD) is a gluten induced immune-mediated disease in genetically predisposed individuals.CD incidence is increasing worldwide which genetics alone cannot explain. Previous studies have shown that the gut microbiota of CD patients differ from that of healthy populations. However, the role of the microbiome in CD pathogenesis and its role in chronic inflammation is yet be established.What are the new findings?In a prospective longitudinal study in children using samples representing all three phases of gut microbiota development (ages 1, 2.5 and 5), we identified significant differences in the composition and function of gut microbiota at each phase. Pathogenesis and inflammation-related functions are enriched in the gut microbiome of CD progressors.We applied IgA-sequencing to identify inflammatory bacteria in both healthy subjects and CD progressors. Flow Cytometry analysis identified more IgA coated bacteria at ages 1 and 5 in CD progressors, indicating an early inflammatory response. CD bacterial IgA targets also differed significantly from healthy controls.We analyzed plasma metabolites obtained at age 5. The CD plasma metabolome was significantly different from healthy controls. Particularly, proinflammatory plasma metabolites, including microbiota-derived taurodeoxycholic acid (TDCA) and isobutyryl-L-carnitine, were increased two-fold in CD progressors.How might it impact clinical practice in the foreseeable future?Our results establish a link between gut microbiota composition and chronic inflammation in CD during child development. The highly IgA-coated bacteria identified in IgA sequencing and inflammatory bacteria potentially contribute to CD pathogenesis. Targeting these bacteria in the early stages of CD development could be a preventative tool.TDCA is a microbiota-derived proinflammatory metabolite increased two-fold in CD progressors. Increased TDCA levels may be used as a predictive/diagnostic tool in genetically predisposed subjects. Moreover, targeting TDCA-producing bacteria (e.g., Clostridium XIVa species) could potentially help to control the intestinal inflammation in CD.Developing anti-inflammatory probiotics/prebiotics might be viable therapeutics for altering microbiota composition in children genetically predisposed for CD. These microbes/compounds may also complement a gluten-free diet in patients that continue to experience persistent CD symptoms.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Alexander Koliada ◽  
Vladislav Moseiko ◽  
Mariana Romanenko ◽  
Oleh Lushchak ◽  
Nadiia Kryzhanovska ◽  
...  

Abstract Background Evidence was previously provided for sex-related differences in the human gut microbiota composition, and sex-specific discrepancy in hormonal profiles was proposed as a main determinant of these differences. On the basis of these findings, the assumption was made on the role of microbiota in the sexual dimorphism of human diseases. To date, sex differences in fecal microbiota were demonstrated primarily at lower taxonomic levels, whereas phylum-level differences between sexes were reported in few studies only. In the present population-based cross-sectional research, sex differences in the phylum-level human gut microbiota composition were identified in a large (total n = 2301) sample of relatively healthy individuals from Ukraine. Results Relative abundances of Firmicutes and Actinobacteria, as determined by qRT-PCR, were found to be significantly increased, while that of Bacteroidetes was significantly decreased in females compared to males. The Firmicutes to Bacteroidetes (F/B) ratio was significantly increased in females compared to males. Females had 31 % higher odds of having F/B ratio more than 1 than males. This trend was evident in all age groups. The difference between sexes was even more pronounced in the elder individuals (50+): in this age group, female participants had 56 % higher odds of having F/B ratio > 1 than the male ones. Conclusions In conclusion, sex-specific differences in the phylum-level intestinal microbiota composition were observed in the Ukraine population. The F/B ratio was significantly increased in females compared to males. Further investigation is needed to draw strong conclusions regarding the mechanistic basis for sex-specific differences in the gut microbiota composition and regarding the role of these differences in the initiation and progression of human chronic diseases.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Stefano Romano ◽  
George M. Savva ◽  
Janis R. Bedarf ◽  
Ian G. Charles ◽  
Falk Hildebrand ◽  
...  

AbstractThe gut microbiota is emerging as an important modulator of neurodegenerative diseases, and accumulating evidence has linked gut microbes to Parkinson’s disease (PD) symptomatology and pathophysiology. PD is often preceded by gastrointestinal symptoms and alterations of the enteric nervous system accompany the disease. Several studies have analyzed the gut microbiome in PD, but a consensus on the features of the PD-specific microbiota is missing. Here, we conduct a meta-analysis re-analyzing the ten currently available 16S microbiome datasets to investigate whether common alterations in the gut microbiota of PD patients exist across cohorts. We found significant alterations in the PD-associated microbiome, which are robust to study-specific technical heterogeneities, although differences in microbiome structure between PD and controls are small. Enrichment of the genera Lactobacillus, Akkermansia, and Bifidobacterium and depletion of bacteria belonging to the Lachnospiraceae family and the Faecalibacterium genus, both important short-chain fatty acids producers, emerged as the most consistent PD gut microbiome alterations. This dysbiosis might result in a pro-inflammatory status which could be linked to the recurrent gastrointestinal symptoms affecting PD patients.


Author(s):  
Sofia Ainonen ◽  
Mysore V Tejesvi ◽  
Md. Rayhan Mahmud ◽  
Niko Paalanne ◽  
Tytti Pokka ◽  
...  

Abstract Background Intrapartum antibiotic prophylaxis (IAP) is widely used, but the evidence of the long-term effects on the gut microbiota and subsequent health of children is limited. Here, we compared the impacts of perinatal antibiotic exposure and later courses of antibiotic courses on gut microbiota. Methods This was a prospective, controlled cohort study among 100 vaginally delivered infants with different perinatal antibiotic exposures: control (27), IAP (27), postnatal antibiotics (24), and IAP and postnatal antibiotics (22). At 1 year of age, we performed next-generation sequencing of the bacterial 16S ribosomal RNA gene of fecal samples. Results Exposure to the perinatal antibiotics had a clear impact on the gut microbiota. The abundance of the Bacteroidetes phylum was significantly higher in the control group, whereas the relative abundance of Escherichia coli was significantly lower in the control group. The impact of the perinatal antibiotics on the gut microbiota composition was greater than exposure to later courses of antibiotics (28% of participants). Conclusions Perinatal antibiotic exposure had a marked impact on the gut microbiota at the age of 1 year. The timing of the antibiotic exposure appears to be the critical factor for the changes observed in the gut microbiota. Impact Infants are commonly exposed to IAP and postnatal antibiotics, and later to courses of antibiotics during the first year of life. Perinatal antibiotics have been associated with an altered gut microbiota during the first months of life, whereas the evidence regarding the long-term impact is more limited. Perinatal antibiotic exposure had a marked impact on the infant’s gut microbiota at 1 year of age. Impact of the perinatal antibiotics on the gut microbiota composition was greater than that of the later courses of antibiotics at the age of 1 year.


2020 ◽  
Vol 9 (12) ◽  
pp. 4080
Author(s):  
Fabien Beaufils ◽  
Emmanuel Mas ◽  
Marie Mittaine ◽  
Martin Addra ◽  
Michael Fayon ◽  
...  

In cystic fibrosis (CF), cystic fibrosis transmembrane regulator (CFTR) dysfunction leads to digestive disorders that promote intestinal inflammation and dysbiosis enhancing gastrointestinal symptoms. In pancreatic insufficiency CF patients, both intestinal inflammation and dysbiosis, are associated with an increase in the fecal calprotectin (FC) level. However, associations between the FC level, gastrointestinal symptoms, and quality of life (QoL) remain poorly studied. We aimed to assess such associations in pancreatic insufficiency CF children. The FC level was measured in pancreatic insufficiency CF children’s stool samples. Children and their parents completed two questionnaires: The Gastrointestinal Symptoms Scales 3.0-PedsQLTM and the Quality of Life Pediatric Inventory 4.0-PedsQLTM. Lower scores indicated worse symptomatology or QoL. Thirty-seven CF children were included. A FC level above 250 µg/g was associated with worse gastrointestinal symptoms and QoL scores. The FC level was inversely correlated with several gastrointestinal scores assessed by children (i.e., Total, “Heart Burn Reflux”, “Nausea and Vomiting”, and “Gas and Bloating”). Several QoL scores were correlated with gastrointestinal scores. The FC level was weakly associated with clinical parameters. Some gastrointestinal and QoL scores were related to disease severity associated parameters. In CF, the FC level, biomarker previously related to intestinal inflammation and dysbiosis, was associated with worse digestive symptoms and QoL scores.


Cells ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 517 ◽  
Author(s):  
Claudia Burrello ◽  
Maria Rita Giuffrè ◽  
Angeli Dominique Macandog ◽  
Angelica Diaz-Basabe ◽  
Fulvia Milena Cribiù ◽  
...  

Different gastrointestinal disorders, including inflammatory bowel diseases (IBD), have been linked to alterations of the gut microbiota composition, namely dysbiosis. Fecal microbiota transplantation (FMT) is considered an encouraging therapeutic approach for ulcerative colitis patients, mostly as a consequence of normobiosis restoration. We recently showed that therapeutic effects of FMT during acute experimental colitis are linked to functional modulation of the mucosal immune system and of the gut microbiota composition. Here we analysed the effects of therapeutic FMT administration during chronic experimental colitis, a condition more similar to that of IBD patients, on immune-mediated mucosal inflammatory pathways. Mucus and feces from normobiotic donors were orally administered to mice with established chronic Dextran Sodium Sulphate (DSS)-induced colitis. Immunophenotypes and functions of infiltrating colonic immune cells were evaluated by cytofluorimetric analysis. Compositional differences in the intestinal microbiome were analyzed by 16S rRNA sequencing. Therapeutic FMT in mice undergoing chronic intestinal inflammation was capable to decrease colonic inflammation by modulating the expression of pro-inflammatory genes, antimicrobial peptides, and mucins. Innate and adaptive mucosal immune cells manifested a reduced pro-inflammatory profile in FMT-treated mice. Finally, restoration of a normobiotic core ecology contributed to the resolution of inflammation. Thus, FMT is capable of controlling chronic intestinal experimental colitis by inducing a concerted activation of anti-inflammatory immune pathways, mechanistically supporting the positive results of FMT treatment reported in ulcerative colitis patients.


2020 ◽  
Vol 11 (7) ◽  
pp. 6363-6375
Author(s):  
Ya-ping Huang ◽  
Ping Li ◽  
Ting Du ◽  
Xin-jun Du ◽  
Shuo Wang

The effect of red yeast rice on Salmonella enterica-induced intestinal inflammation and gut microbiota dysbiosis in mice as well as the underlying mechanism.


2020 ◽  
Vol 98 (11) ◽  
pp. 803-809 ◽  
Author(s):  
Yuanjiao Liang ◽  
Qi Ming ◽  
Jinlan Liang ◽  
Yan Zhang ◽  
Hong Zhang ◽  
...  

The objective was to explore if and how the microbiota changed in polycystic ovary syndrome (PCOS) women compared with healthy women. Eight obese PCOS (PO group), 10 nonobese PCOS (PN group), and nine healthy normal weight women (control) (C group) were enrolled. Insulin (INS), testosterone (T), follicle-stimulating hormone (FSH), luteinizing hormone (LH), estrogen (E2), and dehydroepiandrosterone (DHEA) were detected with radioimmunoassay. Antimullerian hormone (AMH), fasting glucose, and hemoglobin A1c (HbA1c) were determined by a chemiluminescence immunoassay, glucose oxidase method, and HPLC, respectively. Gut microbiota composition was evaluated by PCR. Alpha diversity was assessed using Chao1 and the Shannon index. PCOS women showed significantly higher T, LH, and LH/FSH and lower FSH levels than the C group (p < 0.05). The AMH level was significantly higher in the PO than in the PN group (p < 0.05). The PO group presented a significantly higher fasting INS level and HMOA-IR scores than the other groups, lower observed SVs and alpha diversity than the C group, higher beta diversity than the PN group (p < 0.05), and decreased abundances of genera (mainly butyrate producers). Regression analysis showed that decreased abundances of several genera were correlated with higher circulating T and impaired glucose metabolism. PCOS is associated with changes in the gut microbiota composition. Obesity has a driving role in the development of dysbiotic gut microbiota in PCOS.


Sign in / Sign up

Export Citation Format

Share Document