scholarly journals Robust coordination of collective oscillatory signaling requires single-cell excitability and fold-change detection

2021 ◽  
Author(s):  
Chuqiao Huyan ◽  
Alexander Golden ◽  
Xinwen Zhu ◽  
Pankaj Mehta ◽  
Allyson E. Sgro

Complex multicellular behaviors are coordinated at the level of biochemical signaling networks, yet how this decentralized control mechanism enables robust coordination in variable environments and over many orders of magnitude of spatiotemporal scales remains an open question. A stunning example of these behaviors is found in the microbe Dictyostelium discoideum, which uses the small molecule cyclic AMP (cAMP) to drive the propagation of collective signaling oscillations and spatial waves leading to multicellular development. The critical design features of the Dictyostelium signaling network remain unclear despite decades of mathematical modeling and experimental research because the mathematical models make different assumptions about the network architecture. To resolve this discrepancy, we use recent experimental data to normalize the time and response scales of five major signal relay network models to one another and assess their ability to recapitulate experimentally-observed population and single-cell dynamics. We find that to successfully reproduce the full range of observed behaviors, single cells must be excitable and respond to the relative fold-change of environmental signals, suggesting that these features represent robust principles for controlling cellular populations and that single-cell excitable dynamics are a generalizable route for controlling population behaviors.

2018 ◽  
Author(s):  
Douglas Abrams ◽  
Parveen Kumar ◽  
R. Krishna Murthy Karuturi ◽  
Joshy George

AbstractBackgroundThe advent of single cell RNA sequencing (scRNA-seq) enabled researchers to study transcriptomic activity within individual cells and identify inherent cell types in the sample. Although numerous computational tools have been developed to analyze single cell transcriptomes, there are no published studies and analytical packages available to guide experimental design and to devise suitable analysis procedure for cell type identification.ResultsWe have developed an empirical methodology to address this important gap in single cell experimental design and analysis into an easy-to-use tool called SCEED (Single Cell Empirical Experimental Design and analysis). With SCEED, user can choose a variety of combinations of tools for analysis, conduct performance analysis of analytical procedures and choose the best procedure, and estimate sample size (number of cells to be profiled) required for a given analytical procedure at varying levels of cell type rarity and other experimental parameters. Using SCEED, we examined 3 single cell algorithms using 48 simulated single cell datasets that were generated for varying number of cell types and their proportions, number of genes expressed per cell, number of marker genes and their fold change, and number of single cells successfully profiled in the experiment.ConclusionsBased on our study, we found that when marker genes are expressed at fold change of 4 or more than the rest of the genes, either Seurat or Simlr algorithm can be used to analyze single cell dataset for any number of single cells isolated (minimum 1000 single cells were tested). However, when marker genes are expected to be only up to fC 2 upregulated, choice of the single cell algorithm is dependent on the number of single cells isolated and proportion of rare cell type to be identified. In conclusion, our work allows the assessment of various single cell methods and also aids in examining the single cell experimental design.


2016 ◽  
Vol 113 (12) ◽  
pp. 3251-3256 ◽  
Author(s):  
Mikihiro Hashimoto ◽  
Takashi Nozoe ◽  
Hidenori Nakaoka ◽  
Reiko Okura ◽  
Sayo Akiyoshi ◽  
...  

Cellular populations in both nature and the laboratory are composed of phenotypically heterogeneous individuals that compete with each other resulting in complex population dynamics. Predicting population growth characteristics based on knowledge of heterogeneous single-cell dynamics remains challenging. By observing groups of cells for hundreds of generations at single-cell resolution, we reveal that growth noise causes clonal populations of Escherichia coli to double faster than the mean doubling time of their constituent single cells across a broad set of balanced-growth conditions. We show that the population-level growth rate gain as well as age structures of populations and of cell lineages in competition are predictable. Furthermore, we theoretically reveal that the growth rate gain can be linked with the relative entropy of lineage generation time distributions. Unexpectedly, we find an empirical linear relation between the means and the variances of generation times across conditions, which provides a general constraint on maximal growth rates. Together, these results demonstrate a fundamental benefit of noise for population growth, and identify a growth law that sets a “speed limit” for proliferation.


2019 ◽  
Author(s):  
Victor Olariu ◽  
Mary A. Yui ◽  
Pawel Krupinski ◽  
Wen Zhou ◽  
Julia Deichmann ◽  
...  

AbstractThymic development of committed pro-T-cells from multipotent hematopoietic precursors offers a unique opportunity to dissect the molecular circuitry establishing cell identity in response to environmental signals. This transition encompasses programmed shutoff of stem/progenitor genes, upregulation of T-cell specification genes, extensive proliferation, and commitment after a delay. We have incorporated these factors, as well as new single cell gene expression and developmental kinetics data, into a three-level dynamic model of commitment based upon regulation of the commitment gene Bcl11b. The first level is a core gene regulatory network architecture determined by transcription factor perturbation data, the second a stochastically controlled epigenetic gate, and the third a proliferation model validated by growth and commitment kinetics measured at single-cell levels. Using expression values consistent with single molecule RNA-FISH measurements of key transcription factors, this single-cell model exhibits state switching consistent with measured population and clonal proliferation and commitment times. The resulting multi-scale model provides a powerful mechanistic framework for dissecting commitment dynamics.


Author(s):  
Gunnar Zimmermann ◽  
Richard Chapman

Abstract Dual beam FIBSEM systems invite the use of innovative techniques to localize IC fails both electrically and physically. For electrical localization, we present a quick and reliable in-situ FIBSEM technique to deposit probe pads with very low parasitic leakage (Ipara < 4E-11A at 3V). The probe pads were Pt, deposited with ion beam assistance, on top of highly insulating SiOx, deposited with electron beam assistance. The buried plate (n-Band), p-well, wordline and bitline of a failing and a good 0.2 μm technology DRAM single cell were contacted. Both cells shared the same wordline for direct comparison of cell characteristics. Through this technique we electrically isolated the fail to a single cell by detecting leakage between the polysilicon wordline gate and the cell diffusion. For physical localization, we present a completely in-situ FIBSEM technique that combines ion milling, XeF2 staining and SEM imaging. With this technique, the electrically isolated fail was found to be a hole in the gate oxide at the bad cell.


2021 ◽  
Vol 12 (11) ◽  
pp. 4111-4118
Author(s):  
Qi Zhang ◽  
Yunlong Shao ◽  
Boye Li ◽  
Yuanyuan Wu ◽  
Jingying Dong ◽  
...  

We achieved the low-damage spatial puncture of single cells at specific visual points with an accuracy of <65 nm.


2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Bhupinder Pal ◽  
Yunshun Chen ◽  
Michael J. G. Milevskiy ◽  
François Vaillant ◽  
Lexie Prokopuk ◽  
...  

Abstract Background Heterogeneity within the mouse mammary epithelium and potential lineage relationships have been recently explored by single-cell RNA profiling. To further understand how cellular diversity changes during mammary ontogeny, we profiled single cells from nine different developmental stages spanning late embryogenesis, early postnatal, prepuberty, adult, mid-pregnancy, late-pregnancy, and post-involution, as well as the transcriptomes of micro-dissected terminal end buds (TEBs) and subtending ducts during puberty. Methods The single cell transcriptomes of 132,599 mammary epithelial cells from 9 different developmental stages were determined on the 10x Genomics Chromium platform, and integrative analyses were performed to compare specific time points. Results The mammary rudiment at E18.5 closely aligned with the basal lineage, while prepubertal epithelial cells exhibited lineage segregation but to a less differentiated state than their adult counterparts. Comparison of micro-dissected TEBs versus ducts showed that luminal cells within TEBs harbored intermediate expression profiles. Ductal basal cells exhibited increased chromatin accessibility of luminal genes compared to their TEB counterparts suggesting that lineage-specific chromatin is established within the subtending ducts during puberty. An integrative analysis of five stages spanning the pregnancy cycle revealed distinct stage-specific profiles and the presence of cycling basal, mixed-lineage, and 'late' alveolar intermediates in pregnancy. Moreover, a number of intermediates were uncovered along the basal-luminal progenitor cell axis, suggesting a continuum of alveolar-restricted progenitor states. Conclusions This extended single cell transcriptome atlas of mouse mammary epithelial cells provides the most complete coverage for mammary epithelial cells during morphogenesis to date. Together with chromatin accessibility analysis of TEB structures, it represents a valuable framework for understanding developmental decisions within the mouse mammary gland.


2021 ◽  
Vol 7 (8) ◽  
pp. eabe3610
Author(s):  
Conor J. Kearney ◽  
Stephin J. Vervoort ◽  
Kelly M. Ramsbottom ◽  
Izabela Todorovski ◽  
Emily J. Lelliott ◽  
...  

Multimodal single-cell RNA sequencing enables the precise mapping of transcriptional and phenotypic features of cellular differentiation states but does not allow for simultaneous integration of critical posttranslational modification data. Here, we describe SUrface-protein Glycan And RNA-seq (SUGAR-seq), a method that enables detection and analysis of N-linked glycosylation, extracellular epitopes, and the transcriptome at the single-cell level. Integrated SUGAR-seq and glycoproteome analysis identified tumor-infiltrating T cells with unique surface glycan properties that report their epigenetic and functional state.


Author(s):  
Martin Philpott ◽  
Jonathan Watson ◽  
Anjan Thakurta ◽  
Tom Brown ◽  
Tom Brown ◽  
...  

AbstractHere we describe single-cell corrected long-read sequencing (scCOLOR-seq), which enables error correction of barcode and unique molecular identifier oligonucleotide sequences and permits standalone cDNA nanopore sequencing of single cells. Barcodes and unique molecular identifiers are synthesized using dimeric nucleotide building blocks that allow error detection. We illustrate the use of the method for evaluating barcode assignment accuracy, differential isoform usage in myeloma cell lines, and fusion transcript detection in a sarcoma cell line.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xingjian Zhang ◽  
Trevor Chan ◽  
Michael Mak

AbstractCancer cell metastasis is a major factor in cancer-related mortality. During the process of metastasis, cancer cells exhibit migratory phenotypes and invade through pores in the dense extracellular matrix. However, the characterization of morphological and subcellular features of cells in similar migratory phenotypes and the effects of geometric confinement on cell morphodynamics are not well understood. Here, we investigate the phenotypes of highly aggressive MDA-MB-231 cells in single cell and cell doublet (an initial and simplified collective state) forms in confined microenvironments. We group phenotypically similar single cells and cell doublets and characterize related morphological and subcellular features. We further detect two distinct migratory phenotypes, fluctuating and non-fluctuating, within the fast migrating single cell group. In addition, we demonstrate an increase in the number of protrusions formed at the leading edge of cells after invasion through geometric confinement. Finally, we track the short and long term effects of varied degrees of confinement on protrusion formation. Overall, our findings elucidate the underlying morphological and subcellular features associated with different single cell and cell doublet phenotypes and the impact of invasion through confined geometry on cell behavior.


Sign in / Sign up

Export Citation Format

Share Document