scholarly journals High-fat diet feeding reduces the expression of Rab3a, Rab3gap1, and Rab3Gap2 genes that are pivotal to neuronal exocytosis

2021 ◽  
Author(s):  
Luana Assis Ferreira ◽  
Fernando Victor Martins Rubatino ◽  
Mariana Lacerda de Freitas ◽  
Leonardo Rossi de Oliveira ◽  
Célio Jose de Castro Junior ◽  
...  

AbstractThe Rab3A and Rab3gaps are essential to the Ca+2-dependent neuronal exocytosis in the hypothalamus. The arcuate nucleus of the hypothalamus (ARC) controls food intake and energy expenditure. We have earlier described that the high-fat diet (HFD) feeding induces an obesity phenotype with high leptin production and alteration of proteins related to endosome sorting, and ubiquitination in the ARC of mice. In this study, real-time PCR data analysis revealed that HFD feeding decreases significantly Rab3a, Rab3gap1, and Rab3gap2 transcript levels in the ARC when compared to the group receiving a control diet. The decrease of Rab3gap1/2 transcript levels in the ARC was strongly associated with an increase in plasma leptin. Altogether, our studies demonstrate that HFD feeding could be altering the general network of endosome compartmentalization in the ARC of mice, contributing to a failure in exocytosis and receptor recycling.Graphical abstract

Hypertension ◽  
2021 ◽  
Vol 78 (Suppl_1) ◽  
Author(s):  
Darren Mehay ◽  
Sarah Bingaman ◽  
Yuval Silberman ◽  
Amy Arnold

Angiotensin (Ang)-(1-7) is a protective hormone of the renin-angiotensin system that improves insulin sensitivity, glucose tolerance, and energy balance in obese rodents. Our recent findings suggest that Ang-(1-7) activates mas receptors (MasR) in the arcuate nucleus of the hypothalamus (ARC), a brain region critical to control of energy balance and glucose homeostasis, to induce these positive metabolic effects. The distribution of MasR in the ARC and their role in metabolic regulation, however, is unknown. We hypothesized: (1) MasR are expressed in the ARC; and (2) deletion of ARC MasR leads to worsened metabolic outcomes following high fat diet (HFD). To test this, male and female C57Bl/6J mice were fed a 60% HFD or matched control diet ad libitum for 12 weeks. RNAscope in situ hybridization was performed on coronal ARC sections in rostral-middle-caudal regions to determine percentage of MasR positive neurons (n=5/group). In a second experiment, we assessed body composition and insulin and glucose tolerance in transgenic mice with deletion of MasR in ARC neurons (MasR-flox with AAV5-hsyn-GFP-Cre). RNAscope revealed a wide distribution on MasR-positive cells throughout the rostral to caudal extent of the ARC. The average percentage of MasR positive neurons was increased in females versus males, with HFD tending to increase MasR expression in both sexes (control diet male: 11±2; control diet female: 17±3; HFD male: 15±5; HFD female: 24±2; p sex : 0.030; p diet : 0.066; p int : 0.615; two-way ANOVA). Deletion of MasR in ARC neurons worsened insulin sensitivity in HFD but not control diet females (area under the curve for change in glucose from baseline: -1989±1359 HFD control virus vs. 2530±1762 HFD Cre virus; p=0.016), while fasting glucose, glucose tolerance, and body composition did not change. There was no effect of ARC MasR deletion on metabolic outcomes in control diet or HFD male mice. These findings suggest females have more MasR positive neurons in the ARC compared to males, which may be a sex-specific protective mechanism for glucose homeostasis. While further studies are needed to explore the role of ARC MasR in metabolic regulation, these findings support targeting Ang-(1-7) as an innovative strategy in obesity.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Chang Yeon Kim ◽  
Jang Ho Ahn ◽  
Do Hyun Han ◽  
Cherl NamKoong ◽  
Hyung Jin Choi

The hypothalamus plays a central role in the integrated regulation of feeding and energy homeostasis. The hypothalamic arcuate nucleus (ARC) contains a population of neurons that express orexigenic and anorexigenic factors and is thought to control feeding behavior via several neuronal circuits. In this study, a comparative proteomic analysis of low-fat control diet- (LFD-) and high-fat diet- (HFD-) induced hypothalamic ARC was performed to identify differentially expressed proteins (DEPs) related to changes in body weight. In the ARC in the hypothalamus, 6621 proteins ( FDR < 0.01 ) were detected, and 178 proteins were categorized as DEPs (89 upregulated and 89 downregulated in the HFD group). Among the Gene Ontology molecular function terms associated with the DEPs, protein binding was the most significant. Fibroblast growth factor receptor substrate 2 (Frs2) and SHC adaptor protein 3 (Shc3) were related to protein binding and involved in the neurotrophin signaling pathway according to Kyoto Encyclopedia of Genes and Genomes analysis. Furthermore, high-precision quantitative proteomic analysis revealed that the protein profile of the ARC in mice with HFD-induced obesity differed from that in LFD mice, thereby offering insight into the molecular basis of feeding regulation and suggesting Frs2 and Shc3 as novel treatment targets for central anorexigenic signal induction.


2007 ◽  
Vol 113 (10) ◽  
pp. 417-425 ◽  
Author(s):  
Natalia Sinitskaya ◽  
Sylviane Gourmelen ◽  
Carole Schuster-Klein ◽  
Béatrice Guardiola-Lemaitre ◽  
Paul Pévet ◽  
...  

Metabolic disorders induced by high-fat feeding in rodents evoke some, if not all, of the features of human metabolic syndrome. The occurrence and severity of metabolic disorders, however, varies according to rodent species, and even strain, as well as the diet. Therefore, in the present study, we investigated the long-term obesogenic and diabetogenic effects of three high-fat diets differing by their fat/carbohydrate ratios. Sprague–Dawley rats were fed a control high-carbohydrate and low-fat diet [HCD; 3:16:6 ratio of fat/carbohydrate/protein; 15.48 kJ/g (3.7 kcal/g)], a high-fat and medium-carbohydrate diet [HFD1; 53:30:17 ratio of fat/carbohydrate/protein; 19.66 kJ/g (4.7 kcal/g)], a very-high-fat and low-carbohydrate diet [HFD2; 67:9:24 ratio of fat/carbohydrate/protein; 21.76 kJ/g (5.2 kcal/g)] or a very-high-fat and carbohydrate-free diet [HFD3; 75:0:25 ratio of fat/carbohydrate/protein; 24.69 kJ/g (5.9 kcal/g)] for 10 weeks. Compared with the control diet (HCD), rats fed with high-fat combined with more (HFD1) or less (HFD2) carbohydrate exhibited higher BMI (body mass index; +13 and +10% respectively; P<0.05) and abdominal fat (+70% in both HFD1 and HFD2; P<0.05), higher plasma leptin (+130 and +135% respectively; P<0.05), lower plasma adiponectin levels (−23 and −30% respectively; P<0.05) and impaired glucose tolerance. Only the HFD1 group had insulin resistance. By contrast, a very-high-fat diet devoid of carbohydrate (HFD3) led to impaired glucose tolerance, insulin resistance and hypoadiponectinaemia (−50%; P<0.05), whereas BMI, adiposity and plasma leptin did not differ from respective values in animals fed the control diet. We conclude that increasing the fat-to-carbohydrate ratio to the uppermost (i.e. carbohydrate-free) in a high-fat diet prevents the development of obesity, but not the prediabetic state (i.e. altered glucose tolerance and insulin sensitivity).


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anandini Swaminathan ◽  
Andrej Fokin ◽  
Tomas Venckūnas ◽  
Hans Degens

AbstractMethionine restriction (MR) has been shown to reduce the age-induced inflammation. We examined the effect of MR (0.17% methionine, 10% kCal fat) and MR + high fat diet (HFD) (0.17% methionine, 45% kCal fat) on body mass, food intake, glucose tolerance, resting energy expenditure, hind limb muscle mass, denervation-induced atrophy and overload-induced hypertrophy in young and old mice. In old mice, MR and MR + HFD induced a decrease in body mass. Muscle mass per body mass was lower in old compared to young mice. MR restored some of the HFD-induced reduction in muscle oxidative capacity. The denervation-induced atrophy of the m. gastrocnemius was larger in animals on MR than on a control diet, irrespective of age. Old mice on MR had larger hypertrophy of m. plantaris. Irrespective of age, MR and MR + HFD had better glucose tolerance compared to the other groups. Young and old mice on MR + HFD had a higher resting VO2 per body mass than HFD group. Mice on MR and MR + HFD had a resting respiratory quotient closer to 0.70, irrespective of age, indicating an increased utilization of lipids. In conclusion, MR in combination with resistance training may improve skeletal muscle and metabolic health in old age even in the face of obesity.


2021 ◽  
Vol 22 (14) ◽  
pp. 7551
Author(s):  
Sven H. Rouschop ◽  
Samantha J. Snow ◽  
Urmila P. Kodavanti ◽  
Marie-José Drittij ◽  
Lou M. Maas ◽  
...  

Previous research has shown that a perinatal obesogenic, high-fat diet (HFD) is able to exacerbate ozone-induced adverse effects on lung function, injury, and inflammation in offspring, and it has been suggested that mitochondrial dysfunction is implicated herein. The aim of this study was to investigate whether a perinatal obesogenic HFD affects ozone-induced changes in offspring pulmonary oxidant status and the molecular control of mitochondrial function. For this purpose, female Long-Evans rats were fed a control diet or HFD before and during gestation, and during lactation, after which the offspring were acutely exposed to filtered air or ozone at a young-adult age (forty days). Directly following this exposure, the offspring lungs were examined for markers related to oxidative stress; oxidative phosphorylation; and mitochondrial fusion, fission, biogenesis, and mitophagy. Acute ozone exposure significantly increased pulmonary oxidant status and upregulated the molecular machinery that controls receptor-mediated mitophagy. In female offspring, a perinatal HFD exacerbated these responses, whereas in male offspring, responses were similar for both diet groups. The expression of the genes and proteins involved in oxidative phosphorylation and mitochondrial biogenesis, fusion, and fission was not affected by ozone exposure or perinatal HFD. These findings suggest that a perinatal HFD influences ozone-induced responses on pulmonary oxidant status and the molecular control of mitophagy in female rat offspring.


2020 ◽  
Vol 8 (6) ◽  
pp. 860 ◽  
Author(s):  
Yinzhao Zhong ◽  
Bo Song ◽  
Changbing Zheng ◽  
Shiyu Zhang ◽  
Zhaoming Yan ◽  
...  

Here, we investigated the roles and mechanisms of flavonoids from mulberry leaves (FML) on lipid metabolism in high fat diet (HFD)-fed mice. ICR mice were fed either a control diet (Con) or HFD with or without FML (240 mg/kg/day) by oral gavage for six weeks. FML administration improved lipid accumulation, alleviated liver steatosis and the whitening of brown adipose tissue, and improved gut microbiota composition in HFD-fed mice. Microbiota transplantation from FML-treated mice alleviated HFD-induced lipid metabolic disorders. Moreover, FML administration restored the production of acetic acid in HFD-fed mice. Correlation analysis identified a significant correlation between the relative abundances of Bacteroidetes and the production of acetic acid, and between the production of acetic acid and the weight of selected adipose tissues. Overall, our results demonstrated that in HFD-fed mice, the lipid metabolism improvement induced by FML administration might be mediated by gut microbiota, especially Bacteroidetes-triggered acetic acid production.


2011 ◽  
Vol 300 (3) ◽  
pp. H961-H967 ◽  
Author(s):  
Jackie M. Y. How ◽  
Barbara C. Fam ◽  
Anthony J. M. Verberne ◽  
Daniela M. Sartor

Gastric leptin and cholecystokinin (CCK) act on vagal afferents to induce cardiovascular effects and reflex inhibition of splanchnic sympathetic nerve discharge (SSND) and may act cooperatively in these responses. We sought to determine whether these effects are altered in animals that developed obesity in response to a medium high-fat diet (MHFD). Male Sprague-Dawley rats were placed on a low-fat diet (LFD; n = 8) or a MHFD ( n = 24) for 13 wk, after which the animals were anesthetized and artificially ventilated. Arterial pressure was monitored and blood was collected for the determination of plasma leptin and CCK. SSND responses to leptin (15 μg/kg) and CCK (2 μg/kg) administered close to the coeliac artery were evaluated. Collectively, MHFD animals had significantly higher plasma leptin but lower plasma CCK levels than LFD rats ( P < 0.05), and this corresponded to attenuated or reversed SSND responses to CCK (LFD, −21 ± 2%; and MHFD, −12 ± 2%; P < 0.05) and leptin (LFD, −6 ± 2%; and MHFD, 4 ± 1%; P < 0.001). Alternatively, animals on the MHFD were stratified into obesity-prone (OP; n = 8) or obesity-resistant (OR; n = 8) groups according to their weight gain falling within the upper or lower tertile, respectively. OP rats had significantly higher resting arterial pressure, adiposity, and plasma leptin but lower plasma CCK compared with LFD rats ( P < 0.05). The SSND responses to CCK or leptin were not significantly different between OP and OR animals. These results demonstrate that a high-fat diet is associated with blunted splanchnic sympathoinhibitory responses to gastric leptin and CCK and may impact on sympathetic vasomotor mechanisms involved in circulatory control.


1997 ◽  
Vol 273 (1) ◽  
pp. R113-R120 ◽  
Author(s):  
B. Ahren ◽  
S. Mansson ◽  
R. L. Gingerich ◽  
P. J. Havel

Mechanisms regulating circulating leptin are incompletely understood. We developed a radioimmunoassay for mouse leptin to examine the influence of age, dietary fat content, and fasting on plasma concentrations of leptin in the background strain for the ob/ob mouse, the C57BL/6J mouse. Plasma leptin increased with age [5.3 +/- 0.6 ng/ml at 2 mo (n = 23) vs. 14.2 +/- 1.6 ng/ml at 11 mo (n = 15), P < 0.001]. Across all age groups (2-11 mo, n = 160), log plasma leptin correlated with body weight (r = 0.68, P < 0.0001), plasma insulin (r = 0.38, P < 0.001), and amount of intra-abdominal fat (r = 0.90, P < 0.001), as revealed by magnetic resonance imaging. Plasma leptin was increased by a high-fat diet (58% fat for 10 mo) and reduced by fasting for 48 h. The reduction of plasma leptin was correlated with the reduction of plasma insulin (r = 0.43, P = 0.012) but not with the initial body weight or the change in body weight. Moreover, the reduction in plasma leptin by fasting was impaired by high-fat diet. Thus plasma leptin in C57BL/6J mice 1) increases with age or a high-fat diet; 2) correlates with body weight, fat content, and plasma insulin; and 3) is reduced during fasting by an action inhibited by high-fat diet and related to changes of plasma insulin.


2016 ◽  
Vol 48 (7) ◽  
pp. 491-501 ◽  
Author(s):  
Madeliene Stump ◽  
Deng-Fu Guo ◽  
Ko-Ting Lu ◽  
Masashi Mukohda ◽  
Xuebo Liu ◽  
...  

Peroxisome proliferator-activated receptor-γ (PPARγ), a master regulator of adipogenesis, was recently shown to affect energy homeostasis through its actions in the brain. Deletion of PPARγ in mouse brain, and specifically in the pro-opiomelanocortin (POMC) neurons, results in resistance to diet-induced obesity. To study the mechanisms by which PPARγ in POMC neurons controls energy balance, we constructed a Cre-recombinase-dependent conditionally activatable transgene expressing either wild-type (WT) or dominant-negative (P467L) PPARγ and the tdTomato reporter. Inducible expression of both forms of PPARγ was validated in cells in culture, in liver of mice infected with an adenovirus expressing Cre-recombinase (AdCre), and in the brain of mice expressing Cre-recombinase either in all neurons (NESCre/PPARγ-P467L) or selectively in POMC neurons (POMCCre/PPARγ-P467L). Whereas POMCCre/PPARγ-P467L mice exhibited a normal pattern of weight gain when fed 60% high-fat diet, they exhibited increased weight gain and fat mass accumulation in response to a 10% fat isocaloric-matched control diet. POMCCre/PPARγ-P467L mice were leptin sensitive on control diet but became leptin resistant when fed 60% high-fat diet. There was no difference in body weight between POMCCre/PPARγ-WT mice and controls in response to 60% high-fat diet. However, POMCCre/PPARγ-WT, but not POMCCre/PPARγ-P467L, mice increased body weight in response to rosiglitazone, a PPARγ agonist. These observations support the concept that alterations in PPARγ-driven mechanisms in POMC neurons can play a role in the regulation of metabolic homeostasis under certain dietary conditions.


Hypertension ◽  
2021 ◽  
Vol 78 (Suppl_1) ◽  
Author(s):  
Yining Jin ◽  
Omar Kana ◽  
Ramya Kumar ◽  
Rance Nault ◽  
Hannah Garver ◽  
...  

There is considerable evidence for a causative role for T cells in hypertension, including studies with immunosuppressive drugs and T cell-deficient models. Our previous studies showed that soluble mediators from mesenteric perivascular adipose tissue (mPVAT) modulate T cell function. Specifically, conditioned media from mPVAT (mPVAT-CM) from Dahl S rats on a high fat diet (HFD) promoted expression of the pro-inflammatory cytokines, IFNg, IL-17a and GM-CSF, by activated T cells. Furthermore, the Dahl S rats on HFD will later develop hypertension. Hypothesis: mPVAT is stimulated to produce immunomodulatory mediators that promotes Th1/17 differentiation preceding the development of HFD-induced hypertension. We conducted bulk RNA-seq on activated splenocytes cultured in mPVAT-CM from Dahl S rats on either control or HFD for 10 weeks. In accordance with our previous studies, PVAT-CM from HFD-fed rats significantly upregulated many genes associated with IFNg/IL-17 induction, including Mpeg1, Lyz2 and Tnfsf4 (5.0±1.78, 3.70±0.53 and 1.78±0.42 fold over Control diet, respectively). In contrast, Th2/Treg-associated genes, such as Ctla2a (-0.27±0.02) and Ccr4 (-0.41±0.03) were downregulated. We also performed single cell (sc) RNA-seq on the PVAT stromal vascular fraction (SVF) and found that acute inflammatory genes were enriched in the HFD group. Together with the bulk RNA-seq on mPVAT, these data strongly suggest that the pro-inflammatory mPVAT micro-environment may promote Th1/Th17 differentiation. To identify mediators in PVAT-CM that may induce Th1/Th17 differentiation, we compared the bulk RNA-seq on splenocytes cultured in PVAT-CM with bulk RNA-seq conducted on the whole mPVAT itself. We found that a T cell co-stimulatory receptor DPP4 (CD26), which is closely associated with T cell activation was significantly increased in mPVAT from HFD-fed rats (33.4±2.3 HFD vs. 15.3±1.8 Control diet). We also observed an increase in DPP4 global expression from mPVAT SVF in HFD-fed rats, as determined by scRNA-seq. Conclusion: The data suggest that HFD promotes the IFNg and IL-17a pathways in PVAT, which precedes hypertension in Dahl S rats and correlates with an increase in expression of DPP-4, a gene that promotes T cell activation. (NIH P01 HL070687).


Sign in / Sign up

Export Citation Format

Share Document