scholarly journals Intergenerational effects of a paternal Western diet during adolescence on offspring gut microbiota, stress reactivity and social behavior

2021 ◽  
Author(s):  
Carina Bodden ◽  
Terence Y. Pang ◽  
Yingshi Feng ◽  
Faria Mridha ◽  
Geraldine Kong ◽  
...  

The global consumption of highly processed, calorie-dense foods has contributed to an epidemic of overweight and obesity, along with negative consequences for metabolic dysfunction and disease susceptibility. As it becomes apparent that overweight and obesity have ripple effects through generations, understanding of the processes involved is required, in both maternal and paternal epigenetic inheritance. We focused on the patrilineal effects of a Western-style high-fat (21%) and high-sugar (34%) diet (WD) compared to control diet (CD) during adolescence and investigated F0 and F1 mice for physiological and behavioral changes. F0 males (fathers) showed increased body weight, impaired glycemic control, and decreased attractiveness to females. Paternal WD caused significant phenotypic changes in F1 offspring, including higher body weights of pups, increased Actinobacteria abundance in the gut microbiota (ascertained using 16S microbiome profiling), a food preference for WD pellets, increased male dominance and attractiveness to females, as well as decreased behavioral despair. These results collectively demonstrate the long-term intergenerational effects of a Western-style diet during paternal adolescence. The behavioral and physiological alterations in F1 offspring provide evidence of adaptive paternal programming via epigenetic inheritance. These findings have important implications for understanding paternally mediated intergenerational inheritance, and its relevance to offspring health and disease susceptibility.

2021 ◽  
Vol 36 (1) ◽  
Author(s):  
Carina Bodden ◽  
Terence Y. Pang ◽  
Yingshi Feng ◽  
Faria Mridha ◽  
Geraldine Kong ◽  
...  

Author(s):  
Dong-Yu Kan ◽  
Su-Juan Li ◽  
Chen-Chen Liu ◽  
Ren-Rong Wu

Schizophrenia is a chronic and severe mental disorder with antipsychotics as primary medications, but the antipsychotic-induced metabolic side effects may contribute to the elevated risk of overall morbidity and mortality in patients with psych-iatric diseases. With the development in sequencing technology and bioinformatics, dysbiosis has been shown to contribute to body weight gain and metabolic dysfunction. However, the role of gut microbiota in the antipsychotic-induced metabolic alteration remains unknown. In this paper, we reviewed the recent studies of the gut microbiota with psychiatric disorders and antipsychotic-induced metabolic dysfunction. Patients with neuropsychiatric disorders may have a different composi-tion of gut microbiota compared with healthy controls. In addition, it seems that the use of antipsychotics is concurrently associated with both altered composition of gut microbiota and metabolic disturbance. Further study is needed to address the role of gut microbiota in the development of neuropsychiatric disorders and antipsychotic-induced metabolic disturbance, to develop novel therapeutics for both neuropsychiatric disorders and metabolic dysfunction.


2020 ◽  
Vol 26 (Supplement_1) ◽  
pp. S42-S42
Author(s):  
Kohei Sugihara ◽  
Nobuhiko Kamada

Abstract Background Recent accumulating evidence suggests that amino acids have crucial roles in the maintenance of intestinal homeostasis. In inflammatory bowel disease (IBD), amino acid metabolism is changed in both host and the gut microbiota. Among amino acids, L-serine plays a central role in several metabolic processes that are essential for the growth and survival of both mammalian and bacterial cells. However, the role of L-serine in intestinal homeostasis and IBD remains incompletely understood. In this study, we investigated the effect of dietary L-serine on intestinal inflammation in a murine model of colitis. Methods Specific pathogen-free (SPF) mice were fed either a control diet (amino acid-based diet) or an L-serine-deficient diet (SDD). Colitis was induced by the treatment of dextran sodium sulfate (DSS). The gut microbiome was analyzed by 16S rRNA sequencing. We also evaluate the effect of dietary L-serine in germ-free mice and gnotobiotic mice that were colonized by a consortium of non-mucolytic bacterial strains or the consortium plus mucolytic bacterial strains. Results We found that the SDD exacerbated experimental colitis in SPF mice. However, the severity of colitis in SDD-fed mice was comparable to control diet-fed mice in germ-free condition, suggesting that the gut microbiota is required for exacerbation of colitis caused by the restriction of dietary L-serine. The gut microbiome analysis revealed that dietary L-serine restriction fosters the blooms of a mucus-degrading bacterium Akkermansia muciniphila and adherent-invasive Escherichia coli in the inflamed gut. Consistent with the expansion of mucolytic bacteria, SDD-fed mice showed a loss of the intestinal mucus layer. Dysfunction of the mucus barrier resulted in increased intestinal permeability, thereby leading to bacterial translocation to the intestinal mucosa, which subsequently increased the severity of colitis. The increased intestinal permeability and subsequent bacterial translocation were observed in SDD-fed gnotobiotic mice that colonized by mucolytic bacteria. In contrast, dietary L-serine restriction did not alter intestinal barrier integrity in gnotobiotic mice that colonized only by non-mucolytic bacteria. Conclusion Our results suggest that dietary L-serine regulates the integrity of the intestinal mucus barrier during inflammation by limiting the expansion of mucus degrading bacteria.


2021 ◽  
Author(s):  
Ryohei Nishiguchi ◽  
Srijani Basu ◽  
Hannah A Staab ◽  
Naotake Ito ◽  
Xi Kathy Zhou ◽  
...  

Abstract Diet is believed to be an important factor in the pathogenesis of Inflammatory Bowel Disease. High consumption of dietary fructose has been shown to exacerbate experimental colitis, an effect mediated through the gut microbiota. This study evaluated whether dietary alterations could attenuate the detrimental effects of a high fructose diet (HFrD) in experimental colitis. First, we determined whether the pro-colitic effects of a HFrD could be reversed by switching mice from a HFrD to a control diet. This diet change completely prevented HFrD-induced worsening of acute colitis, in association with a rapid normalization of the microbiota. Second, we tested the effects of dietary fiber, which demonstrated that psyllium was the most effective type of fiber for protecting against HFrD-induced worsening of acute colitis, compared to pectin, inulin or cellulose. In fact, supplemental psyllium nearly completely prevented the detrimental effects of the HFrD, an effect associated with a shift in the gut microbiota. We next determined whether the protective effects of these interventions could be extended to chronic colitis and colitis-associated tumorigenesis. Using the azoxymethane/dextran sodium sulfate model, we first demonstrated that HFrD feeding exacerbated chronic colitis and increased colitis-associated tumorigenesis. Using the same dietary changes tested in the acute colitis setting, we also showed that mice were protected from HFrD-mediated enhanced chronic colitis and tumorigenesis, upon either diet switching or psyllium supplementation. Taken together, these findings suggest that high consumption of fructose may enhance colon tumorigenesis associated with long-standing colitis, an effect that could be reduced by dietary alterations.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yueqin Qiu ◽  
Jun Yang ◽  
Li Wang ◽  
Xuefen Yang ◽  
Kaiguo Gao ◽  
...  

Abstract Background Deoxynivalenol (DON) is a widespread mycotoxin that induces intestinal inflammation and oxidative stress in humans and animals. Resveratrol (RES) effectively exerts anti-inflammatory and antioxidant effects. However, the protective effects of RES on alleviating DON toxicity in piglets and the underlying mechanism remain unclear. Therefore, this study aimed to investigate the effect of RES on growth performance, gut health and the gut microbiota in DON-challenged piglets. A total of 64 weaned piglets [Duroc × (Landrace × Yorkshire), 21-d-old, 6.97 ± 0.10 kg body weight (BW)] were randomly allocated to 4 treatment groups (8 replicate pens per treatment, each pen containing 2 males; n = 16 per treatment) for 28 d. The piglets were fed a control diet (CON) or the CON diet supplemented with 300 mg RES/kg diet (RES group), 3.8 mg DON/kg diet (DON) or both (DON+RES) in a 2 × 2 factorial design. Results DON-challenged piglets fed the RES-supplemented diet had significantly decreased D-lactate concentrations and tumor necrosis factor alpha (TNF-α) and interleukin 1 beta (IL-1β) mRNA and protein expression, and increased zonula occludens-1 (ZO-1) mRNA and protein expression compared with those of DON-challenged piglets fed the unsupplemented diet (P < 0.05). Compared with unsupplemented DON-challenged piglets, infected piglets fed a diet with RES showed significantly decreased malondialdehyde (MDA) levelsand increased mRNA expression of antioxidant enzymes and antioxidant genes (i.e., GCLC, GCLM, HO-1, SOD1 and NQO-1) and glutamate-cysteine-ligase modulatory subunit (GCLM) protein expression (P < 0.05). Moreover, RES supplementation significantly abrogated the increase in the proportion of TUNEL-positive cells and the protein expression of caspase3 in DON-challenged piglets (P < 0.05). Finally, RES supplementation significantly increased the abundance of Roseburia and butyrate concentrations, while decreasing the abundances of Bacteroides and unidentified-Enterobacteriaceae in DON-challenged piglets compared with DON-challenged piglets alone (P < 0.05). Conclusions RES supplementation improved gut health in DON-challenged piglets by strengthening intestinal barrier function, alleviating intestinal inflammation and oxidative damage, and positively modulating the gut microbiota. The protective effects of RES on gut health may be linked to increased Roseburia and butyrate concentrations, and decreased levels of Bacteroides and unidentified-Enterobacteriaceae.


2021 ◽  
Vol 9 (5) ◽  
pp. 1037
Author(s):  
Craig Resch ◽  
Mihir Parikh ◽  
J. Alejandro Austria ◽  
Spencer D. Proctor ◽  
Thomas Netticadan ◽  
...  

There is an increased interest in the gut microbiota as it relates to health and obesity. The impact of diet and sex on the gut microbiota in conjunction with obesity also demands extensive systemic investigation. Thus, the influence of sex, diet, and flaxseed supplementation on the gut microbiota was examined in the JCR:LA-cp rat model of genetic obesity. Male and female obese rats were randomized into four groups (n = 8) to receive, for 12 weeks, either (a) control diet (Con), (b) control diet supplemented with 10% ground flaxseed (CFlax), (c) a high-fat, high sucrose (HFHS) diet, or (d) HFHS supplemented with 10% ground flaxseed (HFlax). Male and female JCR:LA-cp lean rats served as genetic controls and received similar dietary interventions. Illumine MiSeq sequencing revealed a richer microbiota in rats fed control diets rather than HFHS diets. Obese female rats had lower alpha-diversity than lean female; however, both sexes of obese and lean JCR rats differed significantly in β-diversity, as their gut microbiota was composed of different abundances of bacterial types. The feeding of an HFHS diet affected the diversity by increasing the phylum Bacteroidetes and reducing bacterial species from phylum Firmicutes. Fecal short-chain fatty acids such as acetate, propionate, and butyrate-producing bacterial species were correspondingly impacted by the HFHS diet. Flax supplementation improved the gut microbiota by decreasing the abundance of Blautia and Eubacterium dolichum. Collectively, our data show that an HFHS diet results in gut microbiota dysbiosis in a sex-dependent manner. Flaxseed supplementation to the diet had a significant impact on gut microbiota diversity under both flax control and HFHS dietary conditions.


2020 ◽  
Vol 8 (6) ◽  
pp. 860 ◽  
Author(s):  
Yinzhao Zhong ◽  
Bo Song ◽  
Changbing Zheng ◽  
Shiyu Zhang ◽  
Zhaoming Yan ◽  
...  

Here, we investigated the roles and mechanisms of flavonoids from mulberry leaves (FML) on lipid metabolism in high fat diet (HFD)-fed mice. ICR mice were fed either a control diet (Con) or HFD with or without FML (240 mg/kg/day) by oral gavage for six weeks. FML administration improved lipid accumulation, alleviated liver steatosis and the whitening of brown adipose tissue, and improved gut microbiota composition in HFD-fed mice. Microbiota transplantation from FML-treated mice alleviated HFD-induced lipid metabolic disorders. Moreover, FML administration restored the production of acetic acid in HFD-fed mice. Correlation analysis identified a significant correlation between the relative abundances of Bacteroidetes and the production of acetic acid, and between the production of acetic acid and the weight of selected adipose tissues. Overall, our results demonstrated that in HFD-fed mice, the lipid metabolism improvement induced by FML administration might be mediated by gut microbiota, especially Bacteroidetes-triggered acetic acid production.


2020 ◽  
Author(s):  
PRASANT KUMAR JENA ◽  
Lili Sheng ◽  
Michelle Nguyen ◽  
Jacopo Di Lucente ◽  
Ying Hu ◽  
...  

Abstract Background: Chronic consumption of high sugar and high fat diet associated with liver inflammation and cognitive decline. This paper tests a hypothesis that the development and resolution of diet-induced nonalcoholic fatty liver disease (NAFLD) has an impact on neuroplasticity and cognition. Methods: C57BL/6 wild-type mice were fed with either a healthy control diet (CD) or a fructose, palmitate, and cholesterol (FPC)-enriched diet since weaning. When mice were 3-months old, FPC diet-fed mice were randomly assigned to receive either FPC-enriched diet with or without 6% inulin supplementation. At 8 months of age, all three groups of mice were euthanized followed by analysis of inflammatory signaling in the liver and brain, gut microbiota, and cecal metabolites. Results: Our data showed that FPC diet intake induced hepatic steatosis and inflammation in the liver and brain along with elevated RORγ and IL-17A signaling. Accompanied by microglia activation and reduced hippocampal long-term potentiation, FPC diet intake also reduced postsynaptic density-95 and brain derived neurotrophic factor, whereas inulin supplementation prevented diet-reduced neuroplasticity and the development of NAFLD. In the gut, FPC diet increased Coriobacteriaceae and Erysipelotrichaceae, which are implicated in cholesterol metabolism, and the genus Allobaculum, and inulin supplementation reduced them. Furthermore, FPC diet reduced FXR and TGR5 signaling, and inulin supplementation reversed these changes. Untargeted cecal metabolomics profiling uncovered 273 metabolites, and 104 had significant changes due to FPC diet intake or inulin supplementation. Among the top 10 most affected metabolites, FPC-fed mice had marked increase of zymosterol, a cholesterol biosynthesis metabolite, and reduced 2,8-dihydroxyquinoline, which has known benefits in reducing glucose intolerance; these changes were reversible by inulin supplementation. Additionally, the abundance of Barnesiella, Coprobacter, Clostridium XIVa, and Butyrivibrio were negatively correlated with FPC diet intake and the concentration of cecal zymosterol but positively associated with inulin supplementation, suggesting their benefits. Conclusion: Taken together, the presented data suggest that diet alters the gut microbiota and their metabolites, including bile acids. This will subsequently affect IL-17A signaling, resulting in systemic impacts on both hepatic metabolism and cognitive function.


Author(s):  
Farhad Riazi-Rad ◽  
Ava Behrouzi ◽  
Hoora Mazaheri ◽  
Asal Katebi ◽  
Soheila Ajdary

AbstractThe commensal microflora collection known as microbiota has an essential role in maintaining the host's physiological homeostasis. The microbiota has a vital role in induction and regulation of local and systemic immune responses. On the other hand, the immune system involves maintaining microbiota compositions. Optimal microbiota-immune system cross-talk is essential for protective responses to pathogens and immune tolerance to self and harmless environmental antigens. Any change in this symbiotic relationship may cause susceptibility to diseases. The association of various cancers and auto-immune diseases with microbiota has been proven. Here we review the interaction of immune responses to gut microbiota, focusing on innate and adaptive immune system and disease susceptibility.


Animals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1535
Author(s):  
Andong Zha ◽  
Zhijuan Cui ◽  
Ming Qi ◽  
Simeng Liao ◽  
Jia Yin ◽  
...  

The present experiment assessed the inflammatory responses, hormone secretion, and gut microbiota of weanling piglets administered baicalin-copper complex (BCU) or deoxynivalenol (DON) supplementation diets. Twenty-eight piglets were randomly assigned to four groups: control diet (Con group), a 4 mg DON/kg diet (DON group), a 5 g BCU/kg diet (BCU group), a 5 g BCU + 4 mg DON/kg diet (DBCU group). After 14 days, the results showed that dietary BCU supplementation remarkably increased the relative abundance of Clostrium bornimense and decreased the relative abundance of Lactobacillus in the DBCU group (p < 0.05). BCU decreased the serum concentration of IgG, IL-2, IFN-γ, and IgA in DON treated piglets (p < 0.05), and promoted the serum concentration of IL-1β, IgG, IL-2, IFN-γ, IgA, IL-6, IgM, and TNFα in normal piglets (p < 0.05). BCU increased the concentrations of serum IGF1, insulin, NPY, GLP-1, and GH, and decreased the concentrations of serum somatostatin in no DON treated piglets (p < 0.05). Dietary BCU supplementation significantly promoted the secretion of somatostatin, and inhibited the secretion of leptin in piglets challenged with DON (p < 0.05). BCU regulated the expression of food intake-related genes in the hypothalamus and pituitary of piglets. Collectively, dietary BCU supplementation alleviated inflammatory responses and regulated the secretion of appetite-regulating hormones and growth-axis hormones in DON challenged piglets, which was closely linked to changes of intestinal microbes.


Sign in / Sign up

Export Citation Format

Share Document