scholarly journals Flagellin FLiC Enhances Resistance of Upland Cotton to Verticillium dahliae

2021 ◽  
Author(s):  
Heng Zhou ◽  
Yijing Xie ◽  
Yi Wang ◽  
Heqin Zhu ◽  
Canming Tang

AbstractThe mechanism by which flagellin induces an immune response in plants is still unclear. The purpose of this study is to reveal the effect and mechanism of flagellin in inducing plants to produce an immune response to increase the resistance to Verticillium dahliae (VD). The full-length flagellin gene C (FliC) was cloned from an endophytic bacteria (Pseudomonas) in the root of upland cotton cultivar Zhongmiansuo 41. The FliC protein purified in vitro has 47.50% and 32.42% biocontrol effects on resistant and susceptible cotton cultivars, respectively. FLiC can induce allergic reactions in tobacco leaf cells and immune responses in cotton plants. Smearing FLiC to cotton and performing RNA-seq analysis, it is significantly enriched in the activity of positive ion transporters such as potassium ions and calcium ions (Ca2+), diterpenoid biosynthesis, phenylpropane biosynthesis and other disease-resistant metabolic pathways. FLiC inhibits the expression of calcium antiporter activity gene (GhCAA) to accelerate intracellular Ca2+ influx and stimulate the increase of intracellular hydrogen peroxide (H2O2) and nitric oxide (NO) content. The coordinated regulation of Ca2+, H2O2 and NO enhances disease resistance. The resistance of transgenic FLiC gene Arabidopsis to VD was significantly improved. The FLiC gene can be used as an anti-VD gene and as a regulator to improve resistance to VD.

2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Yuhuan MIAO ◽  
Longfu ZHU ◽  
Xianlong ZHANG

Abstract Background Verticillium wilt, caused by Verticillium dahliae, is called a “cancer” disease of cotton. The discovery and identification of defense-related genes is essential for the breeding of Verticillium wilt-resistant varieties. In previous research we identified some possible broad-spectrum resistance genes. Here, we report a tryptophan synthesis-related gene GbTRP1 and its functional analysis in relation to the resistance of cotton to V. dahliae. Results Expression analysis shows that GbTRP1 is suppressed at 1 h and 6 h post V. dahliae infection, but activated at 12 h and 24 h, and the expression of GbTRP1 is highly induced by treatment with salicylic acid and jasmonic acid. Sub-cellular localization studies show that GbTRP1 is localized in the chloroplast. Suppression of GbTRP1 expression leads to lesion-mimic phenotypes and activates the immune response in cotton by showing enhanced resistance to V. dahliae and B. cinerea. Metabolomic analysis shows that anthranilic compounds significantly accumulated in GbTRP1-silenced plants, and these metabolites can inhibit the growth of V. dahliae and B. cinerea in vitro. Conclusions Our results show that suppression of GbTRP1 expression dramatically activates the immune response and increases resistance of cotton to V. dahliae and B. cinerea, possibly due to the accumulation of anthranilate compounds. This study not only provides genetic resources for disease resistance breeding, but also may provide a basis for new chemical control methods for combatting of fungal disease in cotton.


2021 ◽  
Author(s):  
Wenhui Tian ◽  
Zhenrui Cheng ◽  
Junxia Wang ◽  
Fengfeng Cheng ◽  
Luping Li ◽  
...  

Abstract Background: Verticillium dahliae, the causal agent of Verticillium wilt, is notoriously invasive in many crops and has been involved in numerous epidemics worldwide. Bacillus species, as representatives of biocontrol bacteria, produce a variety of lipopeptides (LPs), which are useful as biofungicides to many pathogenic fungi, including Verticillium dahliae. This study will explore the mechanism of resistance of V. dahliae to Bacillus and biocontrol bacteria.Results: By using in vitro confrontation bioassays, we found that under the stress induced by Bacillus, the spore vitality of V. dahliae with larger colonies was higher, and more abundant microsclerotia were formed. Then, according to the RNA-Seq analysis, the target of rapamycin (TOR) and mitophagy pathways were enriched among the significantly upregulated 542 genes observed in two co-culture groups with different colony sizes. In addition, in the group of V. dahliae with large colonies, the pathways related to cell wall synthesis, microsclerotia formation and the clearance of reactive oxygen species were regulated, and the expression of genes was up-regulated.Conclusion: This study found that the larger colonies of V. dahliae were more resistant to the antagonistic actions of Bacillus and the likelihood of the formation of homeostasis. Therefore, the prevention of Verticillium wilt by Bacillus is more effective than the treatment of an active fungal infection. These transcriptomic insights provide direction for the use of fungicides in the prevention and treatment of diseases such as Verticillium wilt.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Shuiyan Wu ◽  
You Jiang ◽  
Yi Hong ◽  
Xinran Chu ◽  
Zimu Zhang ◽  
...  

Abstract Background T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive disease with a high risk of induction failure and poor outcomes, with relapse due to drug resistance. Recent studies show that bromodomains and extra-terminal (BET) protein inhibitors are promising anti-cancer agents. ARV-825, comprising a BET inhibitor conjugated with cereblon ligand, was recently developed to attenuate the growth of multiple tumors in vitro and in vivo. However, the functional and molecular mechanisms of ARV-825 in T-ALL remain unclear. This study aimed to investigate the therapeutic efficacy and potential mechanism of ARV-825 in T-ALL. Methods Expression of the BRD4 were determined in pediatric T-ALL samples and differential gene expression after ARV-825 treatment was explored by RNA-seq and quantitative reverse transcription-polymerase chain reaction. T-ALL cell viability was measured by CCK8 assay after ARV-825 administration. Cell cycle was analyzed by propidium iodide (PI) staining and apoptosis was assessed by Annexin V/PI staining. BRD4, BRD3 and BRD2 proteins were detected by western blot in cells treated with ARV-825. The effect of ARV-825 on T-ALL cells was analyzed in vivo. The functional and molecular pathways involved in ARV-825 treatment of T-ALL were verified by western blot and chromatin immunoprecipitation (ChIP). Results BRD4 expression was higher in pediatric T-ALL samples compared with T-cells from healthy donors. High BRD4 expression indicated a poor outcome. ARV-825 suppressed cell proliferation in vitro by arresting the cell cycle and inducing apoptosis, with elevated poly-ADP ribose polymerase and cleaved caspase 3. BRD4, BRD3, and BRD2 were degraded in line with reduced cereblon expression in T-ALL cells. ARV-825 had a lower IC50 in T-ALL cells compared with JQ1, dBET1 and OTX015. ARV-825 perturbed the H3K27Ac-Myc pathway and reduced c-Myc protein levels in T-ALL cells according to RNA-seq and ChIP. In the T-ALL xenograft model, ARV-825 significantly reduced tumor growth and led to the dysregulation of Ki67 and cleaved caspase 3. Moreover, ARV-825 inhibited cell proliferation by depleting BET and c-Myc proteins in vitro and in vivo. Conclusions BRD4 indicates a poor prognosis in T-ALL. The BRD4 degrader ARV-825 can effectively suppress the proliferation and promote apoptosis of T-ALL cells via BET protein depletion and c-Myc inhibition, thus providing a new strategy for the treatment of T-ALL.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 868
Author(s):  
Fabiana Albani Zambuzi ◽  
Priscilla Mariane Cardoso-Silva ◽  
Ricardo Cardoso Castro ◽  
Caroline Fontanari ◽  
Flavio da Silva Emery ◽  
...  

Decitabine is an approved hypomethylating agent used for treating hematological malignancies. Although decitabine targets altered cells, epidrugs can trigger immunomodulatory effects, reinforcing the hypothesis of immunoregulation in treated patients. We therefore aimed to evaluate the impact of decitabine treatment on the phenotype and functions of monocytes and macrophages, which are pivotal cells of the innate immunity system. In vitro decitabine administration increased bacterial phagocytosis and IL-8 release, but impaired microbicidal activity of monocytes. In addition, during monocyte-to-macrophage differentiation, treatment promoted the M2-like profile, with increased expression of CD206 and ALOX15. Macrophages also demonstrated reduced infection control when exposed to Mycobacterium tuberculosis in vitro. However, cytokine production remained unchanged, indicating an atypical M2 macrophage. Furthermore, when macrophages were cocultured with lymphocytes, decitabine induced a reduction in the release of inflammatory cytokines such as IL-1β, TNF-α, and IFN-γ, maintaining IL-10 production, suggesting that decitabine could potentialize M2 polarization and might be considered as a therapeutic against the exacerbated immune response.


Cancers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2999
Author(s):  
Deborah Reynaud ◽  
Roland Abi Nahed ◽  
Nicolas Lemaitre ◽  
Pierre-Adrien Bolze ◽  
Wael Traboulsi ◽  
...  

The inflammatory gene NLRP7 is the major gene responsible for recurrent complete hydatidiform moles (CHM), an abnormal pregnancy that can develop into gestational choriocarcinoma (CC). However, the role of NLRP7 in the development and immune tolerance of CC has not been investigated. Three approaches were employed to define the role of NLRP7 in CC development: (i) a clinical study that analyzed human placenta and sera collected from women with normal pregnancies, CHM or CC; (ii) an in vitro study that investigated the impact of NLRP7 knockdown on tumor growth and organization; and (iii) an in vivo study that used two CC mouse models, including an orthotopic model. NLRP7 and circulating inflammatory cytokines were upregulated in tumor cells and in CHM and CC. In tumor cells, NLRP7 functions in an inflammasome-independent manner and promoted their proliferation and 3D organization. Gravid mice placentas injected with CC cells invalidated for NLRP7, exhibited higher maternal immune response, developed smaller tumors, and displayed less metastases. Our data characterized the critical role of NLRP7 in CC and provided evidence of its contribution to the development of an immunosuppressive maternal microenvironment that not only downregulates the maternal immune response but also fosters the growth and progression of CC.


Nutrients ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 328 ◽  
Author(s):  
Claudio Salaris ◽  
Melania Scarpa ◽  
Marina Elli ◽  
Alice Bertolini ◽  
Simone Guglielmetti ◽  
...  

SARS-CoV-2 is a newly emerging virus that currently lacks curative treatments. Lactoferrin (LF) is a naturally occurring non-toxic glycoprotein with broad-spectrum antiviral, immunomodulatory and anti-inflammatory effects. In this study, we assessed the potential of LF in the prevention of SARS-CoV-2 infection in vitro. Antiviral immune response gene expression was analyzed by qRT-PCR in uninfected Caco-2 intestinal epithelial cells treated with LF. An infection assay for SARS-CoV-2 was performed in Caco-2 cells treated or not with LF. SARS-CoV-2 titer was determined by qRT-PCR, plaque assay and immunostaining. Inflammatory and anti-inflammatory cytokine production was determined by qRT-PCR. LF significantly induced the expression of IFNA1, IFNB1, TLR3, TLR7, IRF3, IRF7 and MAVS genes. Furthermore, LF partially inhibited SARS-CoV-2 infection and replication in Caco-2 intestinal epithelial cells. Our in vitro data support LF as an immune modulator of the antiviral immune response with moderate effects against SARS-CoV-2 infection.


Sign in / Sign up

Export Citation Format

Share Document