scholarly journals Guanosine-specific single-stranded ribonuclease effectors of a phytopathogenic fungus potentiate host immune responses

2021 ◽  
Author(s):  
Naoyoshi Kumakura ◽  
Suthitar Singkaravanit-Ogawa ◽  
Pamela Gan ◽  
Ayako Tsushima ◽  
Nobuaki Ishihama ◽  
...  

Plants activate immunity upon recognition of pathogen-associated molecular patterns. Although phytopathogens have evolved a set of effector proteins to counteract plant immunity, some effectors are perceived by hosts and induce immune responses. Here, we show that two secreted ribonuclease effectors, SRN1 and SRN2, encoded in a phytopathogenic fungus, Colletotrichum orbiculare, induce cell death in a signal peptide- and catalytic residue-dependent manner, when transiently expressed in Nicotiana benthamiana. The pervasive presence of SRN genes across Colletotrichum species suggested the conserved roles. Using a transient gene expression system in cucumber (Cucumis sativus), an original host of C. orbiculare, we show that SRN1 and SRN2 potentiate host pattern-triggered immunity. Consistent with this, C. orbiculare SRN1 and SRN2 deletion mutants exhibited increased virulence on the host. In vitro analysis revealed that SRN1 specifically cleaves single-stranded RNAs at guanosine, leaving a 3′-end phosphate. This activity has not been reported in plants. Importantly, the potentiation of C. sativus responses by SRN1 and SRN2 depends on the signal peptide and ribonuclease catalytic residues, suggesting that secreted SRNs cleave RNAs in apoplast and are detected by the host. We propose that the pathogen-derived apoplastic guanosine-specific single-stranded endoribonucleases lead to immunity potentiation in plants.

2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Jie Yang ◽  
Yiming Yang ◽  
Huahua Fan ◽  
Hejian Zou

TGF-β-induced regulatory T cells (iTregs) retain Foxp3 expression and immune-suppressive activity in collagen-induced arthritis (CIA). However, the mechanisms whereby transferred iTregs suppress immune responses, particularly the interplay between iTregs and dendritic cells (DCs)in vivo, remain incompletely understood. In this study, we found that after treatment with iTregs, splenic CD11c+DCs, termed “DCiTreg,” expressed tolerogenic phenotypes, secreted high levels of IL-10, TGF-β, and IDO, and showed potent immunosuppressive activityin vitro. After reinfusion with DCiTreg, marked antiarthritic activity improved clinical scores and histological end-points were observed. The serological levels of inflammatory cytokines and anti-CII antibodies were low and TGF-βproduction was high in the DCiTreg-treated group. DCiTregalso induced new iTregsin vivo. Moreover, the inhibitory activity of DCiTregon CIA was lost following pretreatment with the inhibitor of indoleamine 2,3-dioxygenase (IDO). Collectively, these findings suggest that transferred iTregs could induce tolerogenic characteristics in splenic DCs and these cells could effectively dampen CIA in an IDO-dependent manner. Thus, the potential therapeutic effects of iTregs in CIA are likely maintained through the generation of tolerogenic DCsin vivo.


1996 ◽  
Vol 63 (2) ◽  
pp. 257-267 ◽  
Author(s):  
Chun W. Wong ◽  
Geoffrey O. Regester ◽  
Geoffrey L. Francis ◽  
Dennis L. Watson

SummaryStudies on the immunomodulatory activities of ruminant milk and colostral whey fractions were undertaken. By comparing with boiled colostral whey in a preliminary experiment, a putative heat-labile immunostimulatory factor for antibody responses was found to be present in ovine colostral whey. Studies were then undertaken in sheep in which the efferent prefemoral lymphatic ducts were cannulated bilaterally, and immune responses in the node were measured following subcutaneous injection in the flank fold of whey protein preparations of various purities. A significant sustained decline of efferent lymphocyte output was observed following injection with autologous crude milk whey or colostral whey preparations, but no changes were observed in interferon-gamma levels in lymph plasma. Two bovine milk whey fractions (lactoperoxidase and lactoferrin) of high purity were compared in bilaterally cannulated sheep. A transient decline over the first 6 h was seen in the efferent lymphocyte output and lymph flow rate after injection of both fractions. A significant difference was seen between the two fractions in interferongamma levels in lymph at 6 h after injection. However, no significant changes in the proportion of the various efferent lymphocyte phenotypes were seen following either treatment. Whereas both fractions showed a significant inhibitory effect in a dose-dependent manner on the proliferative response of T lymphocytes, but not B lymphocytes, to mitogenic stimulation in vitro, no similar changes were seen following in vivo stimulation with these two fractions.


1990 ◽  
Vol 10 (11) ◽  
pp. 5782-5795 ◽  
Author(s):  
D K Wiest ◽  
D K Hawley

Transcription from the adenovirus major late (ML) promoter has previously been shown to pause or terminate prematurely in vivo and in vitro at a site within the first intron of the major late transcription unit. We are studying the mechanism of elongation arrest at this site in vitro to define the DNA sequences and proteins that determine the elongation behavior of RNA polymerase II. Our assay system consists of a nuclear extract prepared from cultured human cells. With standard reaction conditions, termination is not observed downstream of the ML promoter. However, in the presence of Sarkosyl, up to 80% of the transcripts terminate 186 nucleotides downstream of the start site. Using this assay, we showed that the DNA sequences required to promote maximal levels of termination downstream of the ML promoter reside within a 65-base-pair region and function in an orientation-dependent manner. To test whether elongation complexes from the ML promoter were functionally homogeneous, we determined the termination efficiency at each of two termination sites placed in tandem. We found that the behavior of the elongation complexes was different at these sites, with termination being greater at the downstream site over a wide range of Sarkosyl concentrations. This result ruled out a model in which the polymerases that read through the first site were stably modified to antiterminate. We also demonstrated that the ability of the elongation complexes to respond to the ML termination site was promoter specific, as the site did not function efficiently downstream of a heterologous promoter. Taken together, the results presented here are not consistent with the simplest class of models that have been proposed previously for the mechanism of Sarkosyl-induced termination.


2019 ◽  
Author(s):  
Fabian Giska ◽  
Gregory B. Martin

AbstractPlant immune responses, including the production of reactive oxygen species (ROS), are triggered when pattern recognition receptors (PRR) become activated upon detection of microbe-associated molecular patterns (MAMPs). Receptor-like cytoplasmic kinases are key components of PRR-dependent signaling pathways. In tomato two such kinases, Pti1a and Pti1b, are important positive regulators of the plant immune response. However, it is unknown how these kinases control plant immunity at the molecular level, and how their activity is regulated. To investigate these issues, we used mass spectrometry to search for interactors of Pti1b in Nicotiana benthamiana leaves and identified a protein phosphatase, PP2C6. An in vitro pull-down assay and in vivo split luciferase complementation assay verified this interaction. Pti1b was found to autophosphorylate on threonine-233 and this phosphorylation was abolished in the presence of PP2C6. An arginine-to-cysteine substitution at position 240 in the Arabidopsis MARIS kinase was previously reported to convert it into a constitutive-active form. The analogous substitution in Pti1b made it resistant to PP2C6 phosphatase activity, although it still interacted with PP2C6. Treatment of N. benthamiana leaves with the MAMP flg22 induced threonine phosphorylation of Pti1b. Expression of PP2C6, but not a phosphatase-inactive variant of this protein, in N. benthamiana leaves greatly reduced ROS production in response to treatment with MAMPs flg22 or csp22. The results indicate that PP2C6 acts as a negative regulator by dephosphorylating the Pti1b kinase, thereby interfering with its ability to activate plant immune responses.


2020 ◽  
Author(s):  
Srinivasu Mudalagiriyappa ◽  
Jaishree Sharma ◽  
Hazem F. M. Abdelaal ◽  
Thomas C. Kelly ◽  
Woosuk Choi ◽  
...  

AbstractNon-Tuberculous Mycobacteria (NTM) are ubiquitous in nature, present in soil and water, and cause primary leading to disseminated infections in immunocompromised individuals. NTM infections are surging in recent years due to an increase in an immune-suppressed population, medical interventions, and patients with underlying lung diseases. Host regulators of innate immune responses, frontiers for controlling infections and dissemination, are poorly defined during NTM infections. Here, we describe the role of CBLB, an E3-ubiquitin ligase, for innate immune responses and disease progression in a mouse model of NTM infection under compromised T-cell immunity. We found that CBLB thwarted NTM growth and dissemination in a time- and infection route- dependent manner. Mechanistically, we uncovered defects in many innate immune cells in the absence of Cblb, including poor responses of NK cells, inflammatory monocytes, and conventional dendritic cells. Strikingly, Cblb-deficient macrophages were competent to control NTM growth in vitro. Histopathology suggested the lack of early formation of granulomatous inflammation in the absence of CBLB. Collectively, CBLB is essential to mount productive innate immune responses and help prevent the dissemination during an NTM infection under T-cell deficiency.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Shuguo Hou ◽  
Derui Liu ◽  
Shijia Huang ◽  
Dexian Luo ◽  
Zunyong Liu ◽  
...  

AbstractSessile plants encode a large number of small peptides and cell surface-resident receptor kinases, most of which have unknown functions. Here, we report that the Arabidopsis receptor kinase MALE DISCOVERER 1-INTERACTING RECEPTOR-LIKE KINASE 2 (MIK2) recognizes the conserved signature motif of SERINE-RICH ENDOGENOUS PEPTIDEs (SCOOPs) from Brassicaceae plants as well as proteins present in fungal Fusarium spp. and bacterial Comamonadaceae, and elicits various immune responses. SCOOP signature peptides trigger immune responses and altered root development in a MIK2-dependent manner with a sub-nanomolar sensitivity. SCOOP12 directly binds to the extracellular leucine-rich repeat domain of MIK2 in vivo and in vitro, indicating that MIK2 is the receptor of SCOOP peptides. Perception of SCOOP peptides induces the association of MIK2 and the coreceptors SOMATIC EMBRYOGENESIS RECEPTOR KINASE 3 (SERK3) and SERK4 and relays the signaling through the cytosolic receptor-like kinases BOTRYTIS-INDUCED KINASE 1 (BIK1) and AVRPPHB SUSCEPTIBLE1 (PBS1)-LIKE 1 (PBL1). Our study identifies a plant receptor that bears a dual role in sensing the conserved peptide motif from phytocytokines and microbial proteins via a convergent signaling relay to ensure a robust immune response.


1994 ◽  
Vol 14 (7) ◽  
pp. 4350-4359
Author(s):  
T Ueda ◽  
Z Wang ◽  
N Pham ◽  
J Messing

By utilizing a homologous transient-expression system, we have shown that a 58-bp sequence from the gamma-class 27-kDa zein promoter, spanning from -307 to -250 relative to the transcription start site, confers a high level of transcriptional activity on a truncated plant viral promoter. The transcriptional activity mediated by the 58-bp sequence is orientation independent, and it is further enhanced as a result of its multimerization. A similarly high level of transcriptional activity was also observed in protoplasts isolated from leaf tissue-derived maize suspension cells. In vitro binding and DNase I footprinting assays with nuclear protein prepared from cultured endosperm cells revealed the sequence-specific binding of a nuclear factor(s) to a 16-nucleotide sequence present in the 58-bp region. The nuclear factor binding sequence includes the -300 element, a cis-acting element highly conserved among different zein genes and many other cereal storage protein genes. A 23-bp oligonucleotide sequence containing the nuclear factor binding site is sufficient for binding the nuclear factor in vitro. It also confers a high level of transcriptional activity in vivo, but in an orientation-dependent manner. Four nucleotide substitutions in the -300 element drastically reduced binding and transcriptional activation by the nuclear factor. The same nuclear factor is abundant in the developing kernel endosperm and binds to the -300 element region of the 27-kDa or the alpha-class zein promoter. These results suggest that the highly conserved -300 element is involved in the common regulatory mechanisms mediating the coordinated expression of the zein genes.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3069-3069
Author(s):  
S. Patterson ◽  
I. Kotsianidis ◽  
A. Almeida ◽  
M. Politou ◽  
R. David ◽  
...  

Abstract NKT cells constitute a small (<0.1% of blood and marrow T cells) but potent subset of regulatory T cells. Upon engagement of their unique TCR by the glycolipid presenting, MHC-like, non-polymorphic molecule CD1d, they are activated and secrete copious amounts of TH1 and TH2 cytokines. Activated NKT have a pivotal role in modulating all aspects of the innate and adaptive immune responses mainly through their interaction with antigen presenting cells (APC). Mice deficient in NKT or CD1d have diminished TH1 responses against a variety of pathogens and tumours. Conversely, administration of the model glycolipid α-galactosylceramide (αGC) to wild type mice considerably enhances TH1 immune responses in an NKT- and CD1d-dependent manner. In this work we sought to study the in situ role of NKT in alloreactivity. For this purpose, allogeneic mixed lymphocyte reactions (MLR) were performed using 3H incorporation assays. Purified, negatively selected CD3+ cells and irradiated allogeneic peripheral blood mononuclear cells from normal individuals were used as responders and stimulators respectively. After rigorous NKT cell (as identified by staining with the anti-TCRVα24 and -Vβ11 mAbs specific to the NKT TCR α and β chains) depletion by flow sorting we compared MLR reactivity in the presence and absence of NKT. In a series of MLR that included a panel of 4 different responders and 3–5 stimulators, depletion of NKT profoundly suppressed the proliferation by 68.5%±16.9 compared to baseline (i.e., NKT-replete MLR). This suppressive effect was mirrored by a reduction (45.3%±8) of IFNγ secretion in the supernatants of the NKT-depleted MLR compared to baseline. IL-4, IL-10 and TGFβ were not detected in either NKT replete or NKT depleted MLR. When freshly flow-sorted NKT cells were placed against the allogeneic stimulators they did not proliferate indicating that the decrease in the proliferation after NKT cell depletion is due to a decrease in the proliferation of the alloreactive T cells. Taken together, these findings indicate that NKT cells positively regulate the alloresponse, a TH1-driven immune response. Consistent with this, in MLR performed in the presence of αGC (100ng/ml), proliferation was significantly enhanced as compared to baseline MLR (i.e., performed in the presence of the αGC diluent). In a panel of 5 responders against a panel of 3–5 stimulators treatment of the MLR with αGC resulted in a 43.2%±15.2 increase in proliferation. In accordance with the proliferation data, IGNγ production was significantly increased (mean of 53%), whereas IL-4 was undetectable under both conditions. Furthermore, the enhancing effect of αGC was NKT-dependent, as in NKT-depleted MLR proliferation was equally suppressed in the presence of αGC and its diluent (82.6±6.8 vs 82±8.5 respectively, n=3).In summary, we have demonstrated that NKT cells exert an enhancing effect on the alloreactive response and NKT cell depletion effectively suppresses in vitro alloreactivity. These findings set the scene for exploring on one hand the potential for reducing the risk of severe aGVHD by using NKT depletion in allogeneic haemopoietic stem cell transplantation and on the other hand for exploring the adoptive transfer of purified NKT cells to improve immune reconstitution post transplant. In either case, the rapid, accurate identification and physical isolation of the NKT cells is possible either with the use of mAbs highly specific for the TCR of the NKT cells or with the use of the CD1d/α GC tetramer.


2003 ◽  
Vol 124 (4) ◽  
pp. A335
Author(s):  
Stefan J. Wirtz ◽  
Christoph Becker ◽  
Edward E.S. Nieuwenhuis ◽  
Mark Birkenbach ◽  
Richard S. Blumberg ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document