scholarly journals Locally synchronized ciliary domains and tissue-scale cilia alignment underlie global metachronal wave patterns

2021 ◽  
Author(s):  
Christa Ringers ◽  
Stephan Bialonski ◽  
Jan N Hansen ◽  
Mert Ege ◽  
Benjamin M Friedrich ◽  
...  

Motile cilia are hair-like cell extensions present in multiple organs of the body. How cilia coordinate their regular beat in multiciliated epithelia to efficiently displace fluids remains elusive. Here, we propose the zebrafish nose as an accessible model system to study ciliary dynamics, due to its conserved properties with other ciliated tissues and its high availability for non-invasive imaging. We reveal that cilia are locally synchronized, and that the size of local synchronization domains increases with the viscosity of the surrounding medium. Despite this merely local synchronization, we observe global patterns of traveling metachronal waves across the multiciliated epithelium. Intriguingly, these global wave direction patterns are conserved across individual fish, but different for left and right nose, revealing a chiral asymmetry of metachronal coordination. In conclusion, we show that local synchronization together with tissue-scale cilia alignment shape global wave patterns in multiciliated epithelia.

Author(s):  
Ria Hayatun Nur ◽  
Indahwati A ◽  
Erfiani A

In this globalization era, health is the most important thing to be able to run various activities. Without good health, this will hinder many activities. Diabetes mellitus is one of the diseases caused by unhealty lifestyle.There are many treatments that can be done to prevent the occurrence of diabetes. The treatments are giving the insulin and also checking the glucose rate to the patients.Checking the glucose rate needs the tools which is safety to the body. This research want to develop non invasive tool which is safety and do not injure the patient. The purpose of this research is also finding the best model which derived from Linear, Quadratic, and Cubic Spline Regression. Some respondents were taking to get the glucose measuring by invasive and non invasive tools. It could be seen clearly that Spline Linear Regression was the best model than Quadratic and Cubic Spline Regression. It had 70% and 33.939 for R2 and RMSEP respectively.


Life ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 232
Author(s):  
Srikanth Elesela ◽  
Nicholas W. Lukacs

Viral diseases account for an increasing proportion of deaths worldwide. Viruses maneuver host cell machinery in an attempt to subvert the intracellular environment favorable for their replication. The mitochondrial network is highly susceptible to physiological and environmental insults, including viral infections. Viruses affect mitochondrial functions and impact mitochondrial metabolism, and innate immune signaling. Resurgence of host-virus interactions in recent literature emphasizes the key role of mitochondria and host metabolism on viral life processes. Mitochondrial dysfunction leads to damage of mitochondria that generate toxic compounds, importantly mitochondrial DNA, inducing systemic toxicity, leading to damage of multiple organs in the body. Mitochondrial dynamics and mitophagy are essential for the maintenance of mitochondrial quality control and homeostasis. Therefore, metabolic antagonists may be essential to gain a better understanding of viral diseases and develop effective antiviral therapeutics. This review briefly discusses how viruses exploit mitochondrial dynamics for virus proliferation and induce associated diseases.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Peter P. Ricci ◽  
Otto J. Gregory

AbstractThe presence of ammonia within the body has long been linked to complications stemming from the liver, kidneys, and stomach. These complications can be the result of serious conditions such as chronic kidney disease (CKD), peptic ulcers, and recently COVID-19. Limited liver and kidney function leads to increased blood urea nitrogen (BUN) within the body resulting in elevated levels of ammonia in the mouth, nose, and skin. Similarly, peptic ulcers, commonly from H. pylori, result in ammonia production from urea within the stomach. The presence of these biomarkers enables a potential screening protocol to be considered for frequent, non-invasive monitoring of these conditions. Unfortunately, detection of ammonia in these mediums is rather challenging due to relatively small concentrations and an abundance of interferents. Currently, there are no options available for non-invasive screening of these conditions continuously and in real-time. Here we demonstrate the selective detection of ammonia using a vapor phase thermodynamic sensing platform capable of being employed as part of a health screening protocol. The results show that our detection system has the remarkable ability to selectively detect trace levels of ammonia in the vapor phase using a single catalyst. Additionally, detection was demonstrated in the presence of interferents such as carbon dioxide (CO2) and acetone common in human breath. These results show that our thermodynamic sensors are well suited to selectively detect ammonia at levels that could potentially be useful for health screening applications.


2021 ◽  
pp. 1-9
Author(s):  
Jie Zhang ◽  
Ping Ye ◽  
Lizheng Zhang ◽  
Hongliu Wu ◽  
Tianxi Chi ◽  
...  

BACKGROUND: The treatment of adolescent patients with distal femoral cancer has always been a concern. The limb-salvage, regarded as a mainstream treatment, had been developed in recent years, but its application in children still remains challenging. This is because it can lead to potential limb-length discrepancy from the continued normal growth of the contralateral lower body. The extendable prosthesis could solve this problem. The principle is that it can artificially control the length of the prosthesis, making it consistent with the length of the side of the lower limbs. However, this prosthesis has some complications. The extendable prosthesis is classified into invasive and minimally invasive, which extends the prosthesis with each operation. OBJECTIVE: We designed a new non-invasive prosthesis that can be extended in the body. Based on the non-invasive and extendable characteristics, we need to verify the supporting performance of this prosthesis. METHODS: We carried out a mechanical testing method and finite element analysis simulation. CONCLUSION: The support performance and non-invasively extension of this prosthesis were verified.


Author(s):  
Massimiliano Conson ◽  
Roberta Cecere ◽  
Chiara Baiano ◽  
Francesco De Bellis ◽  
Gabriela Forgione ◽  
...  

Background: Recent evidence has converged in showing that the lateral occipitotemporal cortex is over-recruited during implicit motor imagery in elderly and in patients with neurodegenerative disorders, such as Parkinson’s disease. These data suggest that when automatically imaging movements, individuals exploit neural resources in the visual areas to compensate for the decline in activating motor representations. Thus, the occipitotemporal cortex could represent a cortical target of non-invasive brain stimulation combined with cognitive training to enhance motor imagery performance. Here, we aimed at shedding light on the role of the left and right lateral occipitotemporal cortex in implicit motor imagery. Methods: We applied online, high-frequency, repetitive transcranial magnetic stimulation (rTMS) over the left and right lateral occipitotemporal cortex while healthy right-handers judged the laterality of hand images. Results: With respect to the sham condition, left hemisphere stimulation specifically reduced accuracy in judging the laterality of right-hand images. Instead, the hallmark of motor simulation, i.e., the biomechanical effect, was never influenced by rTMS. Conclusions: The lateral occipitotemporal cortex seems to be involved in mental representation of the dominant hand, at least in right-handers, but not in reactivating sensorimotor information during simulation. These findings provide useful hints for developing combined brain stimulation and behavioural trainings to improve motor imagery.


2017 ◽  
Vol 2017 ◽  
pp. 1-4 ◽  
Author(s):  
Akanksha Agrawal ◽  
Deepanshu Jain ◽  
Sameer Siddique

Cytomegalovirus (CMV) is a ubiquitous organism which can infect multiple organs of the body. In an immunocompromised patient, it can have a myriad of gastrointestinal manifestations. We report a case of recurrent hematochezia and concomitant pseudotumor in an AIDS (acquired immunodeficiency syndrome) patient attributable to CMV infection. A 62-year-old man with a history of AIDS, noncompliant with highly active antiretroviral therapy (HAART), presented with bright red blood per rectum. Index colonoscopy showed presence of multiple ulcers, colonic stenosis, and mass-like appearing lesion. Biopsy confirmed CMV infection and ruled out malignancy. Cessation of dual antiplatelet therapy and compliance with HAART lead to clinical cessation of bleeding and endoscopic healing of ulcers with complete resolution of colon mass on follow-up colonoscopy.


2012 ◽  
Vol 80 ◽  
pp. 129-135 ◽  
Author(s):  
Stéphanie Pasche ◽  
Bastien Schyrr ◽  
Bernard Wenger ◽  
Emmanuel Scolan ◽  
Réal Ischer ◽  
...  

Real-time, on-body measurement using minimally invasive biosensors opens up new perspectives for diagnosis and disease monitoring. Wearable sensors are placed in close contact with the body, performing analyses in accessible biological fluids (wound exudates, sweat). In this context, a network of biosensing optical fibers woven in textile enables the fabric to measure biological parameters in the surrounding medium. Optical fibers are attractive in view of their flexibility and easy integration for on-body monitoring. Biosensing fibers are obtained by modifying standard optical fibers with a sensitive layer specific to biomarkers. Detection is based on light absorption of the sensing fiber, placing a light source and a detector at both extremities of the fiber. Biosensing optical fibers have been developed for the in situ monitoring of wound healing, measuring pH and the activity of proteases in exudates. Other developments aim at the design of sensing patches based on functionalized, porous sol-gel layers, which can be deposited onto textiles and show optical changes in response to biomarkers. Biosensing textiles present interesting perspectives for innovative healthcare monitoring. Wearable sensors will provide access to new information from the body in real time, to support diagnosis and therapy.


2018 ◽  
Vol 16 (2) ◽  
pp. 78-81
Author(s):  
Biswas Satyal ◽  
Abhishek Satyal

Introduction: The ratio of the lengths of the index and the ring finger (2D:4D ratio) is generally different between men and women. A number of studies have shown a correlation between the 2D:4D digit ratio and various physical and behavioral traits. The aim of the present study is to investigate the association of the index (2nd) and ring (4th) digit ratios with some physical traits in Nepal population. Material & Method: 200 students (100 males and 100 females) between ages of 18 years and above were randomly selected with exclusion of those with hand deformities. The digit lengths were measured from the basal crease to the tips usingvernier calipers. The 2D:4D ratios were determined for each subject while height and weight were used to calculate the body mass index and data analyzed. The study was conducted between January 2018 to November 2018. Result: The result of the anthropometric study of the differences in index (2D) and ring (4D) and their ratios shows that there was a significant difference between the length of index finger (2D), ring finger (4D) and the ratios of right hand's 2D:4D in both males and females. There was appositive correlation between the second digit length and Height and weight in males and females both on right and left sides. The 2D:4D ratio for both left and right hand did not show any positive correlation with height, weight or BMI of an individual.


2017 ◽  
Vol 9 (2) ◽  
pp. 420-429 ◽  
Author(s):  
Brigitte M. Weiß ◽  
Andrea Marcillo ◽  
Marta Manser ◽  
Ruben Holland ◽  
Claudia Birkemeyer ◽  
...  

2018 ◽  
Vol 39 (4) ◽  
pp. 1565
Author(s):  
Fernanda Lúcia Passos Fukahori ◽  
Daniela Maria Bastos de Souza ◽  
Eduardo Alberto Tudury ◽  
George Chaves Jimenez ◽  
José Ferreira da Silva Neto ◽  
...  

Joint diseases are relatively common in domestic animals, such as dogs. The involved inflammation produces thermal emission, which can be imaged using specific sensors that allow capturing of infrared images. Given that there have been few reports on the use of thermography in the diagnosis of inflammation associated with diseases of the hip joint in dogs, we here propose a method for identification of inflammatory foci in dogs by using infrared thermometry. The present study aimed to find non-invasive and low-cost resources that couldfacilitate a clinical diagnosis in cases withinflammation in the coxofemoral joint of dogs.To this end, we developed a system in whichthe Flir Systems TG165 thermograph is coupled to a black PVC cannula with a 30-cm focus-to-animal distance.External effects of the environment on the temperature of the animalswere compared with the body temperature as measured by a conventional thermometer.Thirty-one dogs with and without inflammation in the coxofemoral joint underwent clinical evaluation.We verified that the temperature registered by the thermograph inthe animals with joint inflammation was significantlydifferentfrom that incontrol animals without inflammation, in the lateral projection.The method showed a sensitivity of 80%, specificity of 87.5%, and accuracy of 83.87%. This standardized method of diagnosis of inflammatory foci in the coxofemoral articulation of dogs by way of thermography showed sensitivity, specificity, and satisfactory accuracy.


Sign in / Sign up

Export Citation Format

Share Document