scholarly journals Protein proximity networks and functional evaluation of the Casein Kinase 1 γ family reveals unique roles for CK1γ3 in WNT signaling

2021 ◽  
Author(s):  
Megan J Agajanian ◽  
Frances M Potjewyd ◽  
Brittany M. Bowman ◽  
Smaranda Solomon ◽  
Kyle M. LaPak ◽  
...  

The WNT/β-catenin signaling pathway is evolutionarily conserved and controls normal embryonic development, adult tissue homeostasis and regeneration. Aberrant activation or suppression of WNT signaling contributes to cancer initiation and progression, developmental disorders, neurodegeneration, and bone disease. Despite great need and more than 40 years of research, targeted therapies for the WNT pathway have yet to be fully realized. Kinases are exceptionally druggable and occupy key nodes within the WNT signaling network, but several pathway-relevant kinases remain understudied and ′dark′. Here we studied the function of the CSNK1γ subfamily of human kinases. miniTurbo-based proximity biotinylation and mass spectrometry analysis of CSNK1γ1, CSNK1γ2, and CSNK1γ3 revealed numerous established components of the β-catenin-dependent and independent WNT signaling pathway, as well as novel interactors. In gain-of-function experiments leveraging a panel of transcriptional reporters, CSNK1γ3 but not CSNK1γ1 or CSNK1γ2 activated β-catenin-dependent WNT signaling and the Notch pathway. Within the family, CSNK1γ3 expression uniquely induced LRP6 phosphorylation. Conversely, siRNA-mediated silencing of CSNK1γ3 alone had no impact on WNT signaling, though co-silencing of all three family members decreased WNT pathway activity. We characterized two moderately selective and potent small molecule inhibitors of the CSNK1γ family. These inhibitors and a CSNK1γ3 kinase dead mutant suppressed but did not eliminate WNT-driven LRP6 phosphorylation and β-catenin stabilization. Our data suggest that while CSNK1γ3 expression uniquely drives pathway activity, potential functional redundancy within the family necessitates loss of all three family members to suppress the WNT signaling pathway.

2020 ◽  
Vol 21 (16) ◽  
pp. 5940
Author(s):  
Chen Shen ◽  
Anmada Nayak ◽  
Ricardo A. Melendez ◽  
Daniel T. Wynn ◽  
Joshua Jackson ◽  
...  

Wnt signaling regulates numerous cellular processes during embryonic development and adult tissue homeostasis. Underscoring this physiological importance, deregulation of the Wnt signaling pathway is associated with many disease states, including cancer. Here, we review pivotal regulatory events in the Wnt signaling pathway that drive cancer growth. We then discuss the roles of the established negative Wnt regulator, casein kinase 1α (CK1α), in Wnt signaling. Although the study of CK1α has been ongoing for several decades, the bulk of such research has focused on how it phosphorylates and regulates its various substrates. We focus here on what is known about the mechanisms controlling CK1α, including its putative regulatory proteins and alternative splicing variants. Finally, we describe the discovery and validation of a family of pharmacological CK1α activators capable of inhibiting Wnt pathway activity. One of the important advantages of CK1α activators, relative to other classes of Wnt inhibitors, is their reduced on-target toxicity, overcoming one of the major impediments to developing a clinically relevant Wnt inhibitor. Therefore, we also discuss mechanisms that regulate CK1α steady-state homeostasis, which may contribute to the deregulation of Wnt pathway activity in cancer and underlie the enhanced therapeutic index of CK1α activators.


2002 ◽  
Vol 22 (4) ◽  
pp. 1172-1183 ◽  
Author(s):  
Eek-hoon Jho ◽  
Tong Zhang ◽  
Claire Domon ◽  
Choun-Ki Joo ◽  
Jean-Noel Freund ◽  
...  

ABSTRACT Axin2/Conductin/Axil and its ortholog Axin are negative regulators of the Wnt signaling pathway, which promote the phosphorylation and degradation of β-catenin. While Axin is expressed ubiquitously, Axin2 mRNA was seen in a restricted pattern during mouse embryogenesis and organogenesis. Because many sites of Axin2 expression overlapped with those of several Wnt genes, we tested whether Axin2 was induced by Wnt signaling. Endogenous Axin2 mRNA and protein expression could be rapidly induced by activation of the Wnt pathway, and Axin2 reporter constructs, containing a 5.6-kb DNA fragment including the promoter and first intron, were also induced. This genomic region contains eight Tcf/LEF consensus binding sites, five of which are located within longer, highly conserved noncoding sequences. The mutation or deletion of these Tcf/LEF sites greatly diminished induction by β-catenin, and mutation of the Tcf/LEF site T2 abolished protein binding in an electrophoretic mobility shift assay. These results strongly suggest that Axin2 is a direct target of the Wnt pathway, mediated through Tcf/LEF factors. The 5.6-kb genomic sequence was sufficient to direct the tissue-specific expression of d2EGFP in transgenic embryos, consistent with a role for the Tcf/LEF sites and surrounding conserved sequences in the in vivo expression pattern of Axin2. Our results suggest that Axin2 participates in a negative feedback loop, which could serve to limit the duration or intensity of a Wnt-initiated signal.


2021 ◽  
Vol 7 ◽  
Author(s):  
Jing Xie ◽  
Li Huang ◽  
You-Guang Lu ◽  
Da-Li Zheng

Head and neck squamous cell carcinoma (HNSCC) is the most common type of head and neck tumor. It is a high incidence malignant tumor associated with a low survival rate and limited treatment options. Accumulating conclusions indicate that the Wnt signaling pathway plays a vital role in the pathobiological process of HNSCC. The canonical Wnt/β-catenin signaling pathway affects a variety of cellular progression, enabling tumor cells to maintain and further promote the immature stem-like phenotype, proliferate, prolong survival, and gain invasiveness. Genomic studies of head and neck tumors have shown that although β-catenin is not frequently mutated in HNSCC, its activity is not inhibited by mutations in upstream gene encoding β-catenin, NOTCH1, FAT1, and AJUBA. Genetic defects affect the components of the Wnt pathway in oral squamous cell carcinoma (OSCC) and the epigenetic mechanisms that regulate inhibitors of the Wnt pathway. This paper aims to summarize the groundbreaking discoveries and recent advances involving the Wnt signaling pathway and highlight the relevance of this pathway in head and neck squamous cell cancer, which will help provide new insights into improving the treatment of human HNSCC by interfering with the transcriptional signaling of Wnt.


Cancers ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 555 ◽  
Author(s):  
Yunpeng Bai ◽  
Jingjing Sha ◽  
Takahiro Kanno

As oral squamous cell carcinoma (OSCC) can develop from potentially malignant disorders (PMDs), it is critical to develop methods for early detection to improve the prognosis of patients. Epithelial–mesenchymal transition (EMT) plays an important role during tumor progression and metastasis. The Wnt signaling pathway is an intercellular pathway in animals that also plays a fundamental role in cell proliferation and regeneration, and in the function of many cell or tissue types. Specific components of master regulators such as epithelial cadherin (E-cadherin), Vimentin, adenomatous polyposis coli (APC), Snail, and neural cadherin (N-cadherin), which are known to control the EMT process, have also been implicated in the Wnt cascade. Here, we review recent findings on the Wnt signaling pathway and the expression mechanism. These regulators are known to play roles in EMT and tumor progression, especially in OSCC. Characterizing the mechanisms through which both EMT and the Wnt pathway play a role in these cellular pathways could increase our understanding of the tumor genesis process and may allow for the development of improved therapeutics for OSCC.


2019 ◽  
Vol 19 (3) ◽  
pp. 233-246 ◽  
Author(s):  
Antara Banerjee ◽  
Ganesan Jothimani ◽  
Suhanya Veronica Prasad ◽  
Francesco Marotta ◽  
Surajit Pathak

Background:The conserved Wnt/β-catenin signaling pathway is responsible for multiple functions including regulation of stem cell pluripotency, cell migration, self-renewability and cell fate determination. This signaling pathway is of utmost importance, owing to its ability to fuel tissue repair and regeneration of stem cell activity in diverse organs. The human adult stem cells including hematopoietic cells, intestinal cells, mammary and mesenchymal cells rely on the manifold effects of Wnt pathway. The consequences of any dysfunction or manipulation in the Wnt genes or Wnt pathway components result in specific developmental defects and may even lead to cancer, as it is often implicated in stem cell control. It is absolutely essential to possess a comprehensive understanding of the inhibition and/ or stimulation of the Wnt signaling pathway which in turn is implicated in determining the fate of the stem cells.Results:In recent years, there has been considerable interest in the studies associated with the implementation of small molecule compounds in key areas of stem cell biology including regeneration differentiation, proliferation. In support of this statement, small molecules have unfolded as imperative tools to selectively activate and inhibit specific developmental signaling pathways involving the less complex mechanism of action. These compounds have been reported to modulate the core molecular mechanisms by which the stem cells regenerate and differentiate.Conclusion:This review aims to provide an overview of the prevalent trends in the small molecules based regulation of stem cell fate via targeting the Wnt signaling pathway.


2008 ◽  
Vol 19 (6) ◽  
pp. 2588-2596 ◽  
Author(s):  
Kyung-Ah Kim ◽  
Marie Wagle ◽  
Karolyn Tran ◽  
Xiaoming Zhan ◽  
Melissa A. Dixon ◽  
...  

The R-Spondin (RSpo) family of secreted proteins is implicated in the activation of the Wnt signaling pathway. Despite the high structural homology between the four members, expression patterns and phenotypes in knockout mice have demonstrated striking differences. Here we dissected and compared the molecular and cellular function of all RSpo family members. Although all four RSpo proteins activate the canonical Wnt pathway, RSpo2 and 3 are more potent than RSpo1, whereas RSpo4 is relatively inactive. All RSpo members require Wnt ligands and LRP6 for activity and amplify signaling of Wnt3A, Wnt1, and Wnt7A, suggesting that RSpo proteins are general regulators of canonical Wnt signaling. Like RSpo1, RSpo2-4 antagonize DKK1 activity by interfering with DKK1 mediated LRP6 and Kremen association. Analysis of RSpo deletion mutants indicates that the cysteine-rich furin domains are sufficient and essential for the amplification of Wnt signaling and inhibition of DKK1, suggesting that Wnt amplification by RSpo proteins may be a direct consequence of DKK1 inhibition. Together, these findings indicate that RSpo proteins modulate the Wnt pathway by a common mechanism and suggest that coexpression with specific Wnt ligands and DKK1 may determine their biological specificity in vivo.


2020 ◽  
Vol 4 (1) ◽  
pp. 177-196 ◽  
Author(s):  
Rene Jackstadt ◽  
Michael Charles Hodder ◽  
Owen James Sansom

The WNT pathway is a pleiotropic signaling pathway that controls developmental processes, tissue homeostasis, and cancer. The WNT pathway is commonly mutated in many cancers, leading to widespread research into the role of WNT signaling in carcinogenesis. Understanding which cancers are reliant upon WNT activation and which components of the WNT signaling pathway are mutated is paramount to advancing therapeutic strategies. In addition, building holistic insights into the role of WNT signaling in not only tumor cells but also the tumor microenvironment is a vital area of research and may be a promising therapeutic strategy in multiple immunologically inert cancers. Novel compounds aimed at modulating the WNT signaling pathway using diverse mechanisms are currently under investigation in preclinical/early clinical studies. Here, we review how the WNT pathway is activated in multiple cancers and discuss current strategies to target aberrant WNT signaling.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Jinghua Du ◽  
Weiguang Ren ◽  
Qingshan Zhang ◽  
Na Fu ◽  
Fang Han ◽  
...  

Background and Aim. Heme oxygenase-1 (HO-1) has been verified to play an important role in nonalcoholic steatohepatitis (NASH), but the mechanism remains unclear. In this study, we aimed to clarify whether induction of HO-1 reverses steatofibrosis via suppression of the Wnt signaling pathway and to explore the potential mechanism of HO-1 on NASH-related liver fibrosis. Methods. Mice were fed with a methionine-choline-deficient (MCD) diet for 8 weeks to induce steatohepatitis-related liver fibrosis and were treated with HO-1 inducer Hemin and inhibitor ZnPP. Mouse sera were collected for the biochemical analysis, and livers were obtained for further histological observation and gene expression analysis. HSC-T6 cells were cultured for the in vitro study and were administrated with Hemin and si-HO-1 to induce or inhibit the expression of HO-1. qPCR and Western blot were used to assess the mRNA and protein levels of genes. Results. MCD-fed mice developed marked macrovesicular steatosis, focal necrosis, and inflammatory infiltration and pericellular fibrosis in liver sections. Administration of Hemin could significantly ameliorate the severity of steatosis, inflammation, and fibrosis and also could decrease the serum ALT and AST. We demonstrated that HO-1 induction was able to downregulate the key regulator of the canonical Wnt pathway Wnt1 and the noncanonical Wnt pathway Wnt5a. The downstream factors of the Wnt pathway β-catenin and NFAT5 were inhibited by Hemin, but GSK-3β was upregulated compared to the MCD group, which were consistent with the in vitro study. Hemin markedly inhibited the TGF-β1/Smad signaling pathway in both in vivo and in vitro studies. Conclusion. Our study demonstrated that HO-1 inhibited the activation of canonical and noncanonical Wnt signaling pathways in NASH-related liver fibrosis. Thus, these results may suggest a new therapeutic strategy for NASH-related liver fibrosis.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Siqing Sun ◽  
Yutao Wang ◽  
Jianfeng Wang ◽  
Jianbin Bi

Abstract Background The Wnt signaling pathway is core to the growth of bladder tumors. Epithelial-to-mesenchymal transition (EMT) is significant for bladder tumor metastasis. Nevertheless, the relationship between the Wnt signaling pathway, outcomes of bladder cancer (BLCA), and the specific mechanisms driving immune infiltration have not been studied. Methods We obtained Wnt pathway-related gene mRNA and clinicopathological data from the Cancer Genome Atlas (TCGA). We obtained 34 genes that were greatly correlated with outcome using univariate Cox regression analysis and conducted a completely randomized data t-test to perform clinical staging. According to the single-sample gene set enrichment analysis (ssGSEA), the weighted correlation network analysis (WGCNA) was applied to identify relevant biological functions. Various subtypes were identified using consensus cluster analysis. Univariate Cox regression and least absolute shrinkage sum selection operator–Cox regression algorithm analysis were conducted on TCGA and Gene Expression Omnibus data to identify risk characteristics. The Kaplan–Meier method and receiver running feature curves were adopted to calculate overall survival. Single-sample gene set enrichment analysis (ssGSEA) was adopted for the assessment of the degree of immune infiltration. Then, we demonstrated the relationship between PPP2CB and EMT function in two cell lines. Results Thirty-four Wnt signaling pathway-related genes were risk factors for BLCA outcome, and their expression levels differed by clinical stage. The co-expression of WGCNA showed the relationship between the Wnt signaling pathway and biological functions and was closely associated with EMT. We divided BLCA patients into two subtypes using consensus clustering. Survival curves and clinical analysis showed that the Wnt pathway enriched group had worse outcomes. The Wnt signature showed the significance of the outcome for MAPK10, PPP2CB, and RAC3. Based on these genes, the degree of immune infiltration was evaluated. Cell function experiments suggested that PPP2CB drives the proliferation and migration of BLCA cells. Conclusion We found that Wnt signaling pathway-related genes can be used as prognostic risk factors for BLCA, and the Wnt signaling pathway is a cancer-promoting signaling pathway associated with EMT. We identified three critical genes: MAPK10, RAC3, and PPP2CB. The genes in these three Wnt signaling pathways are associated with tumor cell EMT and immune cell infiltration. The most important finding was that these three genes were independent prognostic factors for BLCA.


Author(s):  
Jiang Jiang ◽  
Jianfang Li ◽  
Weiwu Yao ◽  
Wenfang Wang ◽  
Bowen Shi ◽  
...  

Gastric cancer (GC), characterized by uncontrolled growth, is a common malignant tumor of the digestive system. The Wnt signaling pathway plays an important role in the tumorigenesis and proliferation of GC. Many studies on this signaling pathway have focused on its intracellular regulatory mechanism, whereas little attention has been given to extracellular regulatory factors. Dickkopf-1 (Dkk1) is a secretory glycoprotein, and it can bind inhibit activation of the Wnt pathway. However, the regulation and mechanism of DKK1 in the proliferation of GC remain unclear. FOXC1 plays an important role in organ development and tumor growth, but its role in GC tumor growth remains unknown. In this study, we found that the FOXC1 is highly expressed in patients with GC and high expression of FOXC1 correlates to poor prognosis. In addition, we found that the Wnt signaling pathway in GC cells with high FOXC1 expression was strongly activated. FOXC1 negatively regulates DKK1 expression by binding to its promoter region, thereby promoting the activation of Wnt pathway. FOXC1 can also form a complex with unphosphorylated β-catenin protein in the cytoplasm and then dissociates from β-catenin in the nucleus, thereby promoting the entry of β-catenin into the nucleus and regulating expression of c-MYC, which promotes the proliferation of GC cells. Our study not only reveals the function and mechanism of FOXC1 in GC, but also provides a potential target for clinic GC treatment.


Sign in / Sign up

Export Citation Format

Share Document