scholarly journals Interactions between xylem traits linked to hydraulics during xylem development optimize growth performance in conifer seedlings

2021 ◽  
Author(s):  
Jehova Lourenco ◽  
Daniel Houle ◽  
Louis Duchesne ◽  
Daniel Kneeshaw

Climate change has threatened forests globally, challenging tree species ability to track the rapidly changing environment (e..g., drought and temperature rise). Conifer species face strong environmental filters due to climatic seasonality. Investigating how conifers change their hydraulic architecture during xylem development across the season may shed light on possible mechanisms underlying hydraulic adaptation in conifers. Laser microscopy was used to assess the three-dimensional hydraulic architecture of balsam fir (Abies balsamea (Linnaeus) Miller), jack pine (Pinus banksiana Lambert), white spruce (Picea glauca (Moench) Voss), and black spruce (Picea mariana (Miller) Britton, Sterns & Poggenburgh) seedlings. We measured hydraulic-related xylem traits from early to latewood, during four years of plant growth. The xylem development of jack pine seedlings contrasts with the other species for keeping torus overlap (a hydraulic safety-associated xylem trait), relatively constant across the season (from early to latewood) and the years. The tracheids and torus expansion are positively associated with plant growth. Pit aperture-torus covariance is central to the seasonal dynamics of jack pine xylem development, which jointly with a rapid tracheid and pit expansion seems to boost its growth performance. Linking xylem structural changes during xylem development with hydraulics is a major issue for future research to assess conifers vulnerability to climate change.

Author(s):  
Laurie Essig

In Love, Inc., Laurie Essig argues that love is not all we need. As the future became less secure—with global climate change and the transfer of wealth to the few—Americans became more romantic. Romance is not just what lovers do but also what lovers learn through ideology. As an ideology, romance allowed us to privatize our futures, to imagine ourselves as safe and secure tomorrow if only we could find our "one true love" today. But the fairy dust of romance blinded us to what we really need: global movements and structural changes. By traveling through dating apps and spectacular engagements, white weddings and Disney honeymoons, Essig shows us how romance was sold to us and why we bought it. Love, Inc. seduced so many of us into a false sense of security, but it also, paradoxically, gives us hope in hopeless times. This book explores the struggle between our inner cynics and our inner romantic.


2021 ◽  
pp. 004728162110078
Author(s):  
Shanna Cameron ◽  
Alexandra Russell ◽  
Luke Brake ◽  
Katherine Fredlund ◽  
Angela Morris

This article engages with recent discussions in the field of technical communication that call for climate change research that moves beyond the believer/denier dichotomy. For this study, our research team coded 900 tweets about climate change and global warming for different emotions in order to understand how Twitter users rely on affect rhetorically. Our findings use quantitative content analysis to challenge current assumptions about writing and affect on social media, and our results indicate a number of arenas for future research on affect, global warming, and rhetoric.


Games ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 45
Author(s):  
Tiziana Ciano ◽  
Massimiliano Ferrara ◽  
Mariangela Gangemi ◽  
Domenica Stefania Merenda ◽  
Bruno Antonio Pansera

This work aims to provide different perspectives on the relationships between cooperative game theory and the research field concerning climate change dynamics. New results are obtained in the framework of competitive bargaining solutions and related issues, moving from a cooperative approach to a competitive one. Furthermore, the dynamics of balanced and super-balanced games are exposed, with particular reference to coalitions. Some open problems are presented to aid future research in this area.


2021 ◽  
Vol 22 (15) ◽  
pp. 7877
Author(s):  
Fahimeh Shahinnia ◽  
Néstor Carrillo ◽  
Mohammad-Reza Hajirezaei

Environmental adversities, particularly drought and nutrient limitation, are among the major causes of crop losses worldwide. Due to the rapid increase of the world’s population, there is an urgent need to combine knowledge of plant science with innovative applications in agriculture to protect plant growth and thus enhance crop yield. In recent decades, engineering strategies have been successfully developed with the aim to improve growth and stress tolerance in plants. Most strategies applied so far have relied on transgenic approaches and/or chemical treatments. However, to cope with rapid climate change and the need to secure sustainable agriculture and biomass production, innovative approaches need to be developed to effectively meet these challenges and demands. In this review, we summarize recent and advanced strategies that involve the use of plant-related cyanobacterial proteins, macro- and micronutrient management, nutrient-coated nanoparticles, and phytopathogenic organisms, all of which offer promise as protective resources to shield plants from climate challenges and to boost stress tolerance in crops.


2019 ◽  
Vol 11 (4) ◽  
pp. 1163 ◽  
Author(s):  
Melissa Bedinger ◽  
Lindsay Beevers ◽  
Lila Collet ◽  
Annie Visser

Climate change is a product of the Anthropocene, and the human–nature system in which we live. Effective climate change adaptation requires that we acknowledge this complexity. Theoretical literature on sustainability transitions has highlighted this and called for deeper acknowledgment of systems complexity in our research practices. Are we heeding these calls for ‘systems’ research? We used hydrohazards (floods and droughts) as an example research area to explore this question. We first distilled existing challenges for complex human–nature systems into six central concepts: Uncertainty, multiple spatial scales, multiple time scales, multimethod approaches, human–nature dimensions, and interactions. We then performed a systematic assessment of 737 articles to examine patterns in what methods are used and how these cover the complexity concepts. In general, results showed that many papers do not reference any of the complexity concepts, and no existing approach addresses all six. We used the detailed results to guide advancement from theoretical calls for action to specific next steps. Future research priorities include the development of methods for consideration of multiple hazards; for the study of interactions, particularly in linking the short- to medium-term time scales; to reduce data-intensivity; and to better integrate bottom–up and top–down approaches in a way that connects local context with higher-level decision-making. Overall this paper serves to build a shared conceptualisation of human–nature system complexity, map current practice, and navigate a complexity-smart trajectory for future research.


Author(s):  
Wilfrid Greaves

This article examines the implications of human-caused climate change for security in Canada. The first section outlines the current state of climate change, the second discusses climate change impacts on human security in Canada, and the third outlines four other areas of Canada’s national interests threatened by climate change: economic threats; Arctic threats; humanitarian crises at home and abroad; and the threat of domestic conflict. In the conclusion, I argue that climate change has clearly not been successfully “securitized” in Canada, despite the material threats it poses to human and national security, and outline directions for future research.


2012 ◽  
Vol 281 ◽  
pp. 152-162 ◽  
Author(s):  
Weifeng Wang ◽  
Changhui Peng ◽  
Daniel D. Kneeshaw ◽  
Guy R. Larocque ◽  
Xinzhang Song ◽  
...  

2018 ◽  
Vol 23 (3) ◽  
pp. 217-233 ◽  
Author(s):  
Stephane Hallegatte ◽  
Marianne Fay ◽  
Edward B. Barbier

AbstractBecause their assets and income represent such a small share of national wealth, the impacts of climate change on poor people, even if dramatic, will be largely invisible in aggregate economic statistics such as the Gross Domestic Product (GDP). Assessing and managing future impacts of climate change on poverty requires different metrics, and specific studies focusing on the vulnerability of poor people. This special issue provides a set of such studies, looking at the exposure and vulnerability of people living in poverty to shocks and stressors that are expected to increase in frequency or intensity due to climate change, such as floods, droughts, heat waves, and impacts on agricultural production and ecosystem services. This introduction summarizes their approach and findings, which support the idea that the link between poverty and climate vulnerability goes both ways: poverty is one major driver of people's vulnerability to climate-related shocks and stressors, and this vulnerability is keeping people in poverty. The paper concludes by identifying priorities for future research.


Forests ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 248
Author(s):  
Tyler Searls ◽  
James Steenberg ◽  
Xinbiao Zhu ◽  
Charles P.-A. Bourque ◽  
Fan-Rui Meng

Models of forest growth and yield (G&Y) are a key component in long-term strategic forest management plans. Models leveraging the industry-standard “empirical” approach to G&Y are frequently underpinned by an assumption of historical consistency in climatic growing conditions. This assumption is problematic as forest managers look to obtain reliable growth predictions under the changing climate of the 21st century. Consequently, there is a pressing need for G&Y modelling approaches that can be more robustly applied under the influence of climate change. In this study we utilized an established forest gap model (JABOWA-3) to simulate G&Y between 2020 and 2100 under Representative Concentration Pathways (RCP) 2.6, 4.5, and 8.5 in the Canadian province of Newfoundland and Labrador (NL). Simulations were completed using the province’s permanent sample plot data and surface-fitted climatic datasets. Through model validation, we found simulated basal area (BA) aligned with observed BA for the major conifer species components of NL’s forests, including black spruce [Picea mariana (Mill.) Britton et al.] and balsam fir [Abies balsamea (L.) Mill]. Model validation was not as robust for the less abundant species components of NL (e.g., Acer rubrum L. 1753, Populus tremuloides Michx., and Picea glauca (Moench) Voss). Our simulations generally indicate that projected climatic changes may modestly increase black spruce and balsam fir productivity in the more northerly growing environments within NL. In contrast, we found productivity of these same species to only be maintained, and in some instances even decline, toward NL’s southerly extents. These generalizations are moderated by species, RCP, and geographic parameters. Growth modifiers were also prepared to render empirical G&Y projections more robust for use under periods of climate change.


Sign in / Sign up

Export Citation Format

Share Document