scholarly journals Integrative transcriptomics analysis for uterine leiomyosarcoma identifies aberrant activation of cell cycle-dependent kinases and their potential therapeutic significance.

Author(s):  
Kosuke Yoshida ◽  
Akira Yokoi ◽  
Tomofumi Yamamoto ◽  
Yusuke Hayashi ◽  
Jun Nakayama ◽  
...  

Purpose: Uterine leiomyosarcoma is among the most aggressive gynecological malignancies. No effective treatment strategies have been established. This study aimed to identify novel therapeutic targets for uterine leiomyosarcoma based on transcriptome analysis and assess the preclinical efficacy of novel drug candidates. Experimental Design: Transcriptome analysis was carried out using fresh-frozen samples of six uterine leiomyosarcomas and three myomas. The Ingenuity Pathway Analysis was then used to identify potential therapeutic target genes for uterine leiomyosarcoma. Moreover, our results were validated using three independent datasets, including 40 uterine leiomyosarcomas. Then, the inhibitory effects of several selective inhibitors for the candidate genes were examined using the SK-UT-1, SK-LMS-1, and SKN cell lines. Results: We identified 512 considerably dysregulated genes in uterine leiomyosarcoma compared with myoma. The Ingenuity Pathway Analysis showed that the function of several genes, including CHEK1 and PLK1, were predicted to be activated in uterine leiomyosarcoma. Through an in vitro drug screening, PLK1 or CHEK1 inhibitors (BI 2536 or prexasertib) were found to exert a superior anti-cancer effect against cell lines at low nanomolar concentrations and induced cell cycle arrest. In SK-UT-1 tumor-bearing mice, BI 2536 monotherapy demonstrated a marked tumor regression. Moreover, the prexasertib and cisplatin combination therapy also reduced tumorigenicity and prolonged survival. Conclusion: We identified the upregulated expression of PLK1 and CHEK1; their kinase activity was considered to be activated in uterine leiomyosarcoma. BI 2536 and prexasertib demonstrate a significant anti-cancer effect; thus, cell cycle-related kinases may represent a promising therapeutic strategy for treating uterine leiomyosarcoma.

2018 ◽  
Vol 38 (3) ◽  
Author(s):  
Yuliang Hu ◽  
Qiuyong Yang ◽  
Long Wang ◽  
Shuo Wang ◽  
Fei Sun ◽  
...  

Aberrant expressions of long non-coding RNAs (lncRNAs) are the culprits of carcinogenesis via regulating the tumor suppressor or oncogene. LncRNA nuclear enriched abundant transcript 1 (NEAT1) has been identified to be an oncogene to promote tumor growth and metastasis of many cancers. However, the clinical significance and function of NEAT1 in osteosarcoma (OS) remain to be discovered. We here collected OS tissues (n=40) and adjacent non-tumor tissues (n=20) to determine the expression of NEAT1 and its clinical significance. NEAT1 was overexpressed in OS tissues, which positively correlated with tumor size, Enneking stage, and distant metastasis of OS patients. The elevated level of NEAT1 was confirmed in OS cell lines including MG63 and HOS in vitro. Knockdown of NEAT1 by two siRNAs induced impaired cell vitalities, promoted the apoptosis, and G0/G1 arrest in two cell lines, which was associated with inhibited anti-apoptosis signals BCL-2 pathway and cell cycle-related cyclin D1 (CCND1) signals. Moreover, the tumor suppressor miR-34c was negatively regulated and inhibited by NEAT1 in OS. Suppression of miR-34c could up-regulate the expressions of its target genes BCL-2 and CCND1 to antagonize the effects of NEAT1 knockdown. Furthermore, overexpressed NEAT1 reduced the sensitivity of cisplatin (DDP) and inhibited DDP-induced apoptosis and cell cycle arrest via miR-34c. The results in vivo also confirmed that knockdown of NEAT1 sensitized the OS cells to DPP-induced tumor regression, delayed the tumor growth with reduced levels of Ki-67, BCL-2, and cyclin D1 signals, suggesting that NEAT1 is an oncogene and chemotherapy resistant factor in OS.


Cancers ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 107 ◽  
Author(s):  
Marcin Bobiński ◽  
Karolina Okła ◽  
Jarogniew Łuszczki ◽  
Wiesława Bednarek ◽  
Anna Wawruszak ◽  
...  

Background: Uterine sarcomas and carcinosarcoma are associated with unfavorable prognosis. The regimens that are used in chemotherapy are associated with high incidence of side effects and usually do not significantly increase patients’ survival rates. In this study we investigated the activity and interactions between gemcitabine and fucoidan, the natural compound known for its anti-tumor properties, in human sarcomas and carcinosarcoma cell models. Methods: SK-UT-1, SK-UT1-B (carcinosarcoma), MES-SA (leiomyosarcoma), and ESS-1 (endometrial stromal sarcoma) cell lines were used for the experiments. Cells were incubated in the presence of gemcitabine, fucoidan, and mixtures, after the incubation the MTT tests were performed. In order to assess the interactions between tested compounds isobolographic analysis was performed. Additional assessments of apoptosis and cell cycle were done. Results: Additive effect of combined treatment with gemcitabine and fucoidan was observed in ESS-1 and SK-UT-1 cell line. Although the supra-additive (synergistic) effect noticed in SK-UT-1B cell line. It was not possible to determine the interactions of fucoidan and gemcitabine in MES-SA cell line due to insufficient response to treatment. Addition of fucoidan to gemcitabine enhances its proapoptotic activity, what was observed especially in ESS-1 and SK-UT-1B cell lines. The arrest of cell cycle induced by mixture of gemcitabine and fucoidan, superior comparing gemcitabine alone was observed in SK-UT-1B. Conclusions: Obtained data showed that a combination of fucoidan and gemcitabine in uterine endometrial stromal sarcoma and carcinosarcoma cell lines has additive or even synergistic effect in decreasing cell viability. Furthermore, this drug combination induces apoptosis and arrest of cell cycle. The resistance of uterine leiomyosarcoma cell line, justifies searching for other drugs combinations to improve therapy efficacy.


2019 ◽  
Vol 62 (1) ◽  
Author(s):  
Doaa A. Badr ◽  
Mohamed E. Amer ◽  
Wagih M. Abd-Elhay ◽  
Mohamed S. M. Nasr ◽  
Tamer M. M. Abuamara ◽  
...  

Abstract Cancer is known to be a fierce disease that causes a large percentage of the deaths worldwide. The common cancer treatments; chemotherapy, radiotherapy and surgery are known for their severe side effects; therefore scientists are working on finding solutions to reduce these drawbacks. One of these treatment systems is the sustained released drugs formulations, these systems depend on the encapsulation of the chemotherapy within an emulsifying agent, in order to obtain a slow drug release of low doses over long time intervals. In this study, the anti-cancer effects of free and encapsulated sinapic acid was tested against lung (A549), and colon (CaCo2) cancer cell lines, along with normal fibroblast cells (HFB4) as a negative control. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay was performed for IC50 evaluation, also cell cycle assay was performed to detect cell cycle arrest status and related anti-apoptotic and pro-apoptotic; Blc-2, BAX, and P53 gene profile fold changes post cellular treatment. Data recorded revealed that encapsulated SA showed a lower toxicity than the free form to both cell lines and also to the normal cells. The cell cycle analysis showed a cell cycle arrest at the G2/M phase post cell treatment with the free and encapsulated sinapic acid accompanied with up regulation of Bax and P53 and a down regulation of Blc-2 genes in both cell lines. The data suggest a promising anti-cancer and anti-proliferative potential of free and encapsulated sinapic acid. Also they show that the anti-cancer effect of free and encapsulated sinapic acid is quite close.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 4722-4722
Author(s):  
Johan H Gibcus ◽  
Lu Ping Tan ◽  
Rikst Nynke Schakel ◽  
Geert Harms ◽  
Peter Moeller ◽  
...  

Abstract MicroRNAs (miRNAs) are 19–25 nucleotide long RNA molecules derived from precursor genes that inhibit the expression of target genes by binding to their 3′ UTR region. Expression of miRNAs is often tissue specific and miRNA profiling has shown specific miRNA expression patterns in both B-cell development and lymphomagenesis. Hodgkin lymphoma is derived from pre-apoptotic germinal center B-cells, although a general loss of B cell phenotype is noted. Using quantitative RT-PCR and miRNA microarray, we determined the miRNA profile of HL and compared this with the profile of a panel of B-cell non-Hodgkin lymphomas (NHL). The two methods showed a very good correlation for the expression levels of the individual miRNAs. Using a large panel of cell lines, we confirmed differential expression between HL and other B-cell lymphoma derived cell lines for 27 miRNAs. The HL specific miRNAs included miR-155, miR-21 and miR-106b seed family members miR-17-5p, miR-20a, miR-93, miR-106a and miR- 106b. Next, we performed target gene validation of predicted target genes for miR-17-5p, which is highly expressed in HL. Using luciferase reporter assays with stabilized anti-sense miR17-5p oligonucleotides, we showed that GPR137B, RAB12 and RBJ are likely miR-17-5p target genes in two different HL cell lines. Previous publications indicated that miR-106b seed family members negatively regulate the cyclin-dependent kinase inhibitor 1A (p21/CIP1) resulting in cell cycle arrest at G1. Consistent with these findings, we show that the miR-106b family members are highly expressed in L428, whereas p21 is not. However, inhibition of the miR-106b seed family members in L428 does not result in elevated p21 protein expression. Furthermore, there is no cell cycle arrest, growth reduction or increase in cell death and apoptosis after inhibition of the miR-106b seed family members. Thus, we conclude that blocking of the miR-106b seed family members does not necessarily lead to indiction of p21 protein. This suggests an additional regulatory layer of p21 expression in L428 cells.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 5085-5085
Author(s):  
Qingxiao Chen ◽  
Jingsong He ◽  
Xing Guo ◽  
Jing Chen ◽  
Xuanru Lin ◽  
...  

Abstract Background: Acute myeloid leukemia (AML) is the most common form of acute leukemia in adults which is still incurable although novel drugs and new combination of chemotherapies are used . With the development of genetic and molecular biology technologies, more and more genes are found to be related to leukemogenesis and drug resistance of AML. TET2, a member of the ten-eleven-translocation gene family which can modify DNA by catalyzing the conversion of 5-mehtyl-cytosine to 5-hydroxymethyl-cytosine , is often inactivated through mutation or deletion in myeloid malignancies. Recent research reported that TET2 knock-down can promote proliferation of hematopoietic stem cells and leukemic cells. Also, several clinical studies showed that patients with TET2 mutation or low levels of TET2 expression have more aggressive disease courses than those with normal levels of TET2. However, the mechanism of the phenomenon is unknown. Our aim is to uncover how TET2 protein level is negatively correlated with AML cell proliferation and to provide a better view of target therapy in AML. Methods: We determined the expression levels of TET2 and other target genes in acute leukemia cell lines, bone marrow AML specimens, and peripheral blood mononuclear cells from healthy donors by qRT-PCR and Western blot. We also determined the mutation status of TET2 in AML cell lines. CCK8 and flow cytometry were used to determine cell proliferation, cell apoptosis, and cell cycle profile. Methylation-specific PCR were used to examine the methylation status in gene promoter regions. Also, we developed TET2 knock-down lentivirus to transfect AML cell lines to examine the effect of TET2 depletion. Last, RNA-seq was used to compare gene expression level changes between TET2 knock-down cell lines and the control cell lines. Results: AML cells from AML cell lines (KG-1,U937, Kasumi, HL-60, THP-1, and MV4-11) and AML patients' specimens expressed lower levels of TET2 than those of PBMC from the healthy donor (P<0.05). Among AML cell lines, U937 barely expressed TET2, while KG-1 expressed TET2 at a relatively higher level than those of other AML cell lines. We constructed a TET2 shRNA to transfect KG-1,THP-1,MV-4-11,Kasumi,and HL-60, and used qRT-PCR and western blot to verify the knock-down efficiency. CCK8 confirmed that knocking down TET2 could increase leukemia cell proliferation (P<0.05). Flow cytometry showed that cell cycle profile was altered in TET2 knock-down cells compared to the negative control cells. In order to identify target genes, we performed RNA-seq on wildtype and TET2 knockdown KG-1 cells and found that the expression of cell cycle related genes, DNA replication related genes, and some oncogenes were changed. We focused on Pim-1, an oncogene related to leukemogenesis, which was significantly up-regulated in the RNA-seq profile. Western blot and qPCR verified the RNA-seq results of Pim-1 expression in the transfected cells . Also, AML patients' bone marrow samples (n=35) were tested by qPCR and 28 of them were found to express low TET2 but high Pim-1 with the other 7 being opposite. For detailed exploration in expression regulation of Pim-1 via TET2, we screened genes affecting Pim-1 expression and found SHP-1, a tumor suppress gene which is often silenced by promoter methylation in AML. Western blot band of SHP-1 was attenuated in TET2 knockdown KG-1 cells. Moreover, methylation-specific PCR showed that after knocking down TET2 in KG-1 cell line, the promoter regions were methylated much more than the control cells. These results indicated that the function of TET2 in epigenetic modulation plays an important role in regulating Pim-1 expression. Finally, using flow cytometry and CCK8 we surprisingly found that knocking down TET2 expression could lead leukemic cells (KG-1, THP-1 and MV-4-11) more sensitive to Pim-1 inhibitor (SGI-1776 free base) and decitabine (a demethylation agent treating MDS and AML) (P<0.05). Conclusion: Our study showed that knocking down TET2 promoted leukemic cell proliferation. This phenomenon may correlate to Pim-1 up-regulation. Our clinical data also showed that the expression of TET2 and Pim-1 have an inverse relationship. The mechanism of TET2 regulating Pim-1 expression may be related to the epigenetic modulation function of TET2. Finally, we found TET2 downregulation could increase leukemia vulnerability to Pim-1 inhibitor and decitbine, and provide a novel view of target therapy in AML. Disclosures No relevant conflicts of interest to declare.


2015 ◽  
Vol 112 (25) ◽  
pp. 7743-7748 ◽  
Author(s):  
Muhammad Akhtar Ali ◽  
Shady Younis ◽  
Ola Wallerman ◽  
Rajesh Gupta ◽  
Leif Andersson ◽  
...  

The transcription factor ZBED6 (zinc finger, BED-type containing 6) is a repressor of IGF2 whose action impacts development, cell proliferation, and growth in placental mammals. In human colorectal cancers, IGF2 overexpression is mutually exclusive with somatic mutations in PI3K signaling components, providing genetic evidence for a role in the PI3K pathway. To understand the role of ZBED6 in tumorigenesis, we engineered and validated somatic cell ZBED6 knock-outs in the human colorectal cancer cell lines RKO and HCT116. Ablation of ZBED6 affected the cell cycle and led to increased growth rate in RKO cells but reduced growth in HCT116 cells. This striking difference was reflected in the transcriptome analyses, which revealed enrichment of cell-cycle–related processes among differentially expressed genes in both cell lines, but the direction of change often differed between the cell lines. ChIP sequencing analyses displayed enrichment of ZBED6 binding at genes up-regulated in ZBED6-knockout clones, consistent with the view that ZBED6 modulates gene expression primarily by repressing transcription. Ten differentially expressed genes were identified as putative direct gene targets, and their down-regulation by ZBED6 was validated experimentally. Eight of these genes were linked to the Wnt, Hippo, TGF-β, EGF receptor, or PI3K pathways, all involved in colorectal cancer development. The results of this study show that the effect of ZBED6 on tumor development depends on the genetic background and the transcriptional state of its target genes.


2021 ◽  
Author(s):  
saranya J ◽  
BS Sre ◽  
M Arivanandan ◽  
K Bhuvaneswari ◽  
S Sherin ◽  
...  

Abstract Using the ultrasonic approach, we produced a morphology involving cerium oxide/ Zinc oxide/graphene oxide (CeO2/ZnO/GO) nanocomposite-based system. The developed nanocomposite was examined using X-Ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and field emission scanning electron microscopy (FESEM). The average crystallite size was found to be 11.44 nm, as determined by XRD. FTIR analysis was used to confirm the existence of functional groups. FESEM was used to verify the morphological properties of CeO2/ZnO/GO. The micromorphology of CeO2/ZnO/GO nanocomposite reveals a smoother sheet-like structure. In addition, using an antiproliferative assay test, the developed nanosystem was evaluated for its scavenging anti-cancer capability against HeLa cell lines at various doses and incubation intervals. In our investigation, the effective IC50 concentration was reported to be 62.5 µg/ml at 72 h. Further, the developed nanosystem was evaluated for its killing efficacy against normal cell line. To identify apoptosis-associated alterations of cell membranes throughout the apoptosis process, a dual acridine orange/ethidium bromide (AO/EB) fluorescent staining was done using CeO2/ZnO/GO nanocomposite at three specific concentrations. The quantitative analysis was carried out using flow cytometry (FACS study) to determine the cell cycle during which the greatest number of HeLa cells were destroyed. According to the results of the FACS investigation, maximum cell cycle has taken place in P2, P4.As a result, the newly designed CeO2/ZnO/GO hybrid has demonstrated improved anti-cancer efficacy against the HeLa cell line, making it a better therapeutic agent for cervical cancer detection.


2021 ◽  
Author(s):  
Kazuo Tsuchiya ◽  
Katsuhiro Yoshimura ◽  
Yuji Iwashita ◽  
Yusuke Inoue ◽  
Tsutomu Ohta ◽  
...  

Background: The modification of N6-methyladenosine (m6A) in RNA and its eraser ALKBH5, an m6A demethylase, play important roles across various steps of human carcinogenesis. However, the involvement of ALKBH5 in non-small cell lung cancer (NSCLC) development remains to be completely elucidated. Methods: The current study investigated the involvement of ALKBH5 in NSCLC development using immunostaining of clinical NSCLC specimens as well as cancer-related cellular functions (cell proliferation, migration ability, cell cycle, and apoptosis) in ALKBH5-knockdown lung cancer cell lines. Moreover, a microarray was utilized to comprehensively analyze mRNA and m6A in ALKBH5-knockdown cells. m6A target genes were identified using the methylated RNA immunoprecipitation (MeRIP) assay with m6A antibody. Furthermore, mRNA stability and protein expression owing to m6A modification (the target genes) were examined. Results: Clinicopathological analysis revealed that increased ALKBH5 expression was an independent prognostic factor associated with unfavorable overall survival in NSCLC (hazard ratios, 1.468; 95% confidence interval, 1.039—2.073). In vitro study revealed that ALKBH5 knockdown suppressed cell proliferation ability of PC9 and A549 cells as well as promoted G1 arrest and increased the number of apoptotic cells. Furthermore, ALKBH5 overexpression increased the cell proliferation ability of the immortalized cell lines BEAS2B and HEK293. Comprehensive analysis of microarray and MeRIP quantitative-polymerase chain reaction revealed that 3′ untranslated regions (3′ UTRs) of CDKN1A, TIMP3, E2F1, and CCNG2 mRNA were potential targets of ALKBH5. Depending on the lung cancer cell lines, increased expression of CDKN1A or TIMP3 and decreased cell proliferation were observed by ALKBH5 knockdown. These alterations were offset by a double knockdown of both ALKBH5 and one of the IGF2BPs. The decline of mRNAs was, at least partly, owing to the destabilization of these mRNAs by one of the IGF2BPs. Conclusions: Upregulation of ALKBH5 in NSCLC reduces m6A modifications on the 3′ UTR of specific genes. Loss of m6A causes a decrease in opportunity for recognition by IGF2BPs and destabilizes the target transcript, such as CDKN1A (p21) and TIMP3. Downregulation of CDKN1A (p21) and TIMP3 induces cell cycle alteration and inhibits apoptosis. The ALKBH5—IGF2BPs axis promotes cell proliferation and tumorigenicity, which in turn causes the unfavorable prognosis of NSCLC.


Biomolecules ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 792 ◽  
Author(s):  
Dhanasekhar Reddy ◽  
Ranjith Kumavath ◽  
Preetam Ghosh ◽  
Debmalya Barh

Cardiac glycosides (CGs) are a diverse family of naturally derived compounds having a steroid and glycone moiety in their structures. CG molecules inhibit the α-subunit of ubiquitous transmembrane protein Na+/K+-ATPase and are clinically approved for the treatment of cardiovascular diseases. Recently, the CGs were found to exhibit selective cytotoxic effects against cancer cells, raising interest in their use as anti-cancer molecules. In this current study, we explored the underlying mechanism responsible for the anti-cancer activity of Lanatoside C against breast (MCF-7), lung (A549), and liver (HepG2) cancer cell lines. Using Real-time PCR, western blot, and immunofluorescence studies, we observed that (i) Lanatoside C inhibited cell proliferation and induced apoptosis in cell-specific and dose-dependent manner only in cancer cell lines; (ii) Lanatoside C exerts its anti-cancer activity by arresting the G2/M phase of cell cycle by blocking MAPK/Wnt/PAM signaling pathways; (iii) it induces apoptosis by inducing DNA damage and inhibiting PI3K/AKT/mTOR signaling pathways; and finally, (iv) molecular docking analysis shows significant evidence on the binding sites of Lanatoside C with various key signaling proteins ranging from cell survival to cell death. Our studies provide a novel molecular insight of anti-cancer activities of Lanatoside C in human cancer cells.


2019 ◽  
Vol 12 (3) ◽  
pp. 117 ◽  
Author(s):  
Nakhjavani ◽  
Palethorpe ◽  
Tomita ◽  
Smith ◽  
Price ◽  
...  

Ginsenoside Rg3 (Rg3) has two epimers, 20(S)-ginsenoside Rg3 (SRg3) and 20(R)-ginsenoside Rg3 (RRg3), and while Rg3 itself has been reported to have anti-cancer properties, few studies have been reported on the anti-cancer effects of the different epimers. The aim was to investigate the stereoselective effects of the Rg3 epimers on triple negative breast cancer (TNBC) cell lines, tested using cell-based assays for proliferation, apoptosis, cell cycle arrest, migration and invasion. Molecular docking showed that Rg3 interacted with the aquaporin 1 (AQP1) water channel (binding score −9.4 kJ mol−1). The Xenopus laevis oocyte expression system was used to study the effect of Rg3 epimers on the AQP1 water permeability. The AQP1 expression in TNBC cell lines was compared with quantitative-polymerase chain reaction (PCR). The results showed that only SRg3 inhibited the AQP1 water flux and inhibited the proliferation of MDA-MB-231 (100 μM), due to cell cycle arrest at G0/G1. SRg3 inhibited the chemoattractant-induced migration of MDA-MB-231. The AQP1 expression in MDA-MB-231 was higher than in HCC1143 or DU4475 cell lines. These results suggest a role for AQP1 in the proliferation and chemoattractant-induced migration of this cell line. Compared to SRg3, RRg3 had more potency and efficacy, inhibiting the migration and invasion of MDA-MB-231. Rg3 has stereoselective anti-cancer effects in the AQP1 high-expressing cell line MDA-MB-231.


Sign in / Sign up

Export Citation Format

Share Document