scholarly journals Computational docking reveals evolutionary conservation of a specific interaction between 15d-Prostaglandin-J2 and eIF4A

2017 ◽  
Author(s):  
So Jeong Yun ◽  
Hyunjoon Kim ◽  
Seung Gee Lee ◽  
Seung-Hyun Jung ◽  
Joon Hyun Kim ◽  
...  

ABSTRACT15-deoxy-delta 12,14-prostaglandin J2 (15d-PGJ2) is anti-inflammatory/antineoplastic prostaglandin which functions through covalent binding to cysteine residues of various target proteins. We previously showed that 15d-PGJ2 mediated anti-inflammatory responses are dependent on the translational inhibition through its interaction with eIF4A. Binding of 15d-PGJ2 to eIF4A specifically blocks the interaction between eIF4G and eIF4A leads to the formation of stress granules (SGs), which cluster mRNAs with inhibited translation. Here we show that the binding between 15d-PGJ2 and eIF4A specifically blocks the interaction between the MIF4G domain of eIF4G and eIF4A. To reveal the mechanism of this interaction, we used computational simulation-based docking studies and identified that the carboxyl tail of 15d-PGJ2 could stabilize the binding of 15d-PGJ2 to eIF4A through arginine 295 of eIF4A, which is the first suggestion that the 15d-PGJ2 tail play a physiological role. Interestingly, the putative 15d-PGJ2 binding site on eiF4A is conserved across many species, suggesting a biological role. Our data propose that studying 15d-PGJ2 and its targets will may uncover new therapeutic approaches in anti-inflammatory drug discovery.

2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Deok Jeong ◽  
Jaehwi Lee ◽  
Young-Su Yi ◽  
Yanyan Yang ◽  
Kyoung Won Kim ◽  
...  

Electrical stimulation with a weak current has been demonstrated to modulate various cellular and physiological responses, including the differentiation of mesenchymal stem cells and acute or chronic physical pain. Thus, a variety of investigations regarding the physiological role of nano- or microlevel currents at the cellular level are actively proceeding in the field of alternative medicine. In this study, we focused on the anti-inflammatory activity of aluminum-copper patches (ACPs) under macrophage-mediated inflammatory conditions. ACPs generated nanolevel currents ranging from 30 to 55 nA in solution conditions. Interestingly, the nanocurrent-generating aluminum-copper patches (NGACPs) were able to suppress both lipopolysaccharide-(LPS-) and pam3CSK-induced inflammatory responses such as NO and PGE2production in both RAW264.7 cells and peritoneal macrophages at the transcriptional level. Through immunoblotting and immunoprecipitation analyses, we found that p38/AP-1 could be the major inhibitory pathway in the NGACP-mediated anti-inflammatory response. Indeed, inhibition of p38 by SB203580 showed similar inhibitory activity of the production of TNF-αand PGE2and the expression of TNF-αand COX-2 mRNA. These results suggest that ACP-induced nanocurrents alter signal transduction pathways that are involved in the inflammatory response and could therefore be utilized in the treatment of various inflammatory diseases such as arthritis and colitis.


Pathogens ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 308
Author(s):  
Sergei N. Borchsenius ◽  
Innokentii E. Vishnyakov ◽  
Olga A. Chernova ◽  
Vladislav M. Chernov ◽  
Nikolai A. Barlev

Mycoplasmas are the smallest free-living organisms. Reduced sizes of their genomes put constraints on the ability of these bacteria to live autonomously and make them highly dependent on the nutrients produced by host cells. Importantly, at the organism level, mycoplasmal infections may cause pathological changes to the host, including cancer and severe immunological reactions. At the molecular level, mycoplasmas often activate the NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) inflammatory response and concomitantly inhibit the p53-mediated response, which normally triggers the cell cycle and apoptosis. Thus, mycoplasmal infections may be considered as cancer-associated factors. At the same time, mycoplasmas through their membrane lipoproteins (LAMPs) along with lipoprotein derivatives (lipopeptide MALP-2, macrophage-activating lipopeptide-2) are able to modulate anti-inflammatory responses via nuclear translocation and activation of Nrf2 (the nuclear factor-E2-related anti-inflammatory transcription factor 2). Thus, interactions between mycoplasmas and host cells are multifaceted and depend on the cellular context. In this review, we summarize the current information on the role of mycoplasmas in affecting the host’s intracellular signaling mediated by the interactions between transcriptional factors p53, Nrf2, and NF-κB. A better understanding of the mechanisms underlying pathologic processes associated with reprogramming eukaryotic cells that arise during the mycoplasma-host cell interaction should facilitate the development of new therapeutic approaches to treat oncogenic and inflammatory processes.


Molecules ◽  
2019 ◽  
Vol 24 (20) ◽  
pp. 3731 ◽  
Author(s):  
Shaoxia Ye ◽  
Qiyao Zheng ◽  
Yang Zhou ◽  
Bai Bai ◽  
Depo Yang ◽  
...  

The lindenane-type sesquiterpenoid chlojaponilactone B (1), isolated from Chloranthus japonicus, has been reported to possess anti-inflammatory properties. The present study aimed to further explore the molecular mechanisms underlying the anti-inflammatory activity of 1. RNA-seq analyses revealed the significant changes in the expression levels of genes related to multiple inflammatory pathways upon treatment of lipopolysaccharide (LPS)-induced RAW 264.7 murine macrophages with 1. Real time PCR (RT-PCR) and Western blotting were used to confirm the modulations in the expression of essential molecules related to inflammatory responses. Compound 1 inhibited toll like receptor 4 (TLR4) and myeloid differentiation factor 88 (MyD88) activation upon LPS stimulation, influencing the expression of NF-κB and pro-inflammatory mediators. Molecular docking studies showed that 1 bound to TLR4 in a manner similar to that of TAK-242, a TLR4 inhibitor. Moreover, our results showed that 1 suppressed inflammatory responses by inhibiting TLR4 and subsequently decreasing reactive oxygen species (ROS) generation, downregulating the NF-κB, thus reducing the expression of the pro-inflammatory cytokines iNOS, NO, COX-2, IL-6 and TNF-α; these effects were similar to those of TAK-242. We proposed that 1 should be considered as a potential anti-inflammatory compound in future research.


2020 ◽  
Vol 9 (5) ◽  
pp. 1534
Author(s):  
Maria Antonietta Panaro ◽  
Tarek Benameur ◽  
Chiara Porro

Oxytocin (OXT) is hypothalamic neuropeptide synthetized in the brain by magnocellular and parvo cellular neurons of the paraventricular (PVN), supraoptic (SON) and accessory nuclei (AN) of the hypothalamus. OXT acts in the central and peripheral nervous systems via G-protein-coupled receptors. The classical physiological functions of OXT are uterine contractions, the milk ejection reflex during lactation, penile erection and sexual arousal, but recent studies have demonstrated that OXT may have anti-inflammatory and anti-oxidant properties and regulate immune and anti-inflammatory responses. In the pathogenesis of various neurodegenerative diseases, microglia are present in an active form and release high levels of pro-inflammatory cytokines and chemokines that are implicated in the process of neural injury. A promising treatment for neurodegenerative diseases involves new therapeutic approaches targeting activated microglia. Recent studies have reported that OXT exerts neuroprotective effects through the inhibition of production of pro-inflammatory mediators, and in the development of correct neural circuitry. The focus of this review is to attribute a new important role of OXT in neuroprotection through the microglia–OXT interaction of immature and adult brains. In addition, we analyzed the strategies that could enhance the delivery of OXT in the brain and amplify its positive effects.


2020 ◽  
Vol 20 (23) ◽  
pp. 2106-2117
Author(s):  
Martin Krátký ◽  
Šárka Štěpánková ◽  
Michaela Brablíková ◽  
Katarína Svrčková ◽  
Markéta Švarcová ◽  
...  

Background: Hydrazide-hydrazones have been known as scaffold with various biological activities including inhibition of acetyl- (AChE) and butyrylcholinesterase (BuChE). Cholinesterase inhibitors are mainstays of dementias’ treatment. Objective: Twenty-five iodinated hydrazide-hydrazones and their analogues were designed as potential central AChE and BuChE inhibitors. Methods: Hydrazide-hydrazones were synthesized from 4-substituted benzohydrazides and 2-/4- hydroxy-3,5-diiodobenzaldehydes. The compounds were investigated in vitro for their potency to inhibit AChE from electric eel and BuChE from equine serum using Ellman’s method. We calculated also physicochemical and structural parameters for CNS delivery. Results: The derivatives exhibited a moderate dual inhibition with IC50 values ranging from 15.1-140.5 and 35.5 to 170.5 μmol.L-1 for AChE and BuChE, respectively. Generally, the compounds produced a balanced or more potent inhibition of AChE. N'-[(E)-(4-Hydroxy-3,5-diiodophenyl)methylidene]-4- nitrobenzohydrazide 2k and 4-fluoro-N'-(2-hydroxy-3,5-diiodobenzyl)benzohydrazide 3a were the most potent inhibitors of AChE and BuChE, respectively. Structure-activity relationships were established, and molecular docking studies confirmed interaction with enzymes. Conclusion: Many novel hydrazide-hydrazones showed lower IC50 values than rivastigmine against AChE and some of them were comparable for BuChE to this drug used for the treatment of dementia. They interact with cholinesterases via non-covalent binding into the active site. Based on the BOILEDEgg approach, the majority of the derivatives met the criteria for blood-brain-barrier permeability.


2019 ◽  
Vol 16 (10) ◽  
pp. 1157-1166
Author(s):  
Rodrigo César da Silva ◽  
Fabiano Veiga ◽  
Fabiana Cardoso Vilela ◽  
André Victor Pereira ◽  
Thayssa Tavares da Silva Cunha ◽  
...  

Background: : A new series of O-benzyloximes derived from eugenol was synthesized and was evaluated for its antinociceptive and anti-inflammatory properties. Methods: : The target compounds were obtained in good global 25-28% yields over 6 steps, which led us to identify compounds (Z)-5,6-dimethoxy-2,2-dimethyl-2,3-dihydro-1H-inden-1-one-O-(4- (methylthio)benzyloxime (8b), (Z)-5,6-dimethoxy-2,2-dimethyl-2,3-dihydro-1H-inden-1-one-O-4- bromobenzyloxime (8d) and (Z)-5,6-dimethoxy-2,2-dimethyl-2,3-dihydro-1H-inden-1-one-O-4- (methylsulfonyl)benzyloxime (8f) as promising bioactive prototypes. Results:: These compounds have significant analgesic and anti-inflammatory effects, as evidenced by formalin-induced mice paw edema and carrageenan-induced mice paw edema tests. In the formalin test, compounds 8b and 8f evidenced both anti-inflammatory and direct analgesic activities and in the carrageenan-induced paw edema, with compounds 8c, 8d, and 8f showing the best inhibitory effects, exceeding the standard drugs indomethacin and celecoxib. Conclusion: : Molecular docking studies have provided additional evidence that the pharmacological profile of these compounds may be related to inhibition of COX enzymes, with slight preference for COX-1. These results led us to identify the new O-benzyloxime ethers 8b, 8d and 8f as orally bioactive prototypes, with a novel structural pattern capable of being explored in further studies aiming at their optimization and development as drug candidates.


2017 ◽  
Vol 13 (2) ◽  
pp. 186-195 ◽  
Author(s):  
Jelena Savic ◽  
Sanda Dilber ◽  
Marina Milenkovic ◽  
Jelena Kotur-Stevuljevic ◽  
Bojan Markovic ◽  
...  

2019 ◽  
Vol 18 (13) ◽  
pp. 1892-1899 ◽  
Author(s):  
Tanushree Pal ◽  
Asmita Sharda ◽  
Bharat Khade ◽  
C. Sinha Ramaa ◽  
Sanjay Gupta

Background: At present, ‘pharmaco-epigenomics’ constitutes the hope in cancer treatment owing to epigenetic deregulation- a reversible process and playing a role in malignancy. Objective: Chemotherapy has many limitations like host-tissue toxicity, drug resistance. Hence, it is imperative to unearth targets to better treat cancer. Here, we intend to repurpose a set of our previously synthesized difluorinated Propanediones (PR) as Histone lysine Methyltransferase inhibitors (HMTi). Methods: The cell lines of leukemic origin viz. histiocytic lymphoma (U937) and acute T-cell leukemia (JURKAT) were treated with PR-1 to 7 after docking studies with active pocket of HMT. The cell cycle analysis, in vitro methylation and cell proliferation assays were carried out to delineate their physiological role. Results: A small molecule PR-4, at 1 and 10µM, has shown to alter the methylation of histone H3 and H4 in both cell lines. Also, treatment shows an increase in G2/M population and a subsequent decrease in the G0/G1 population in U937. In JURKAT, an increase in both G2/M and S phase population was observed. The sub-G1 population showed a steady rise with increase in dose and prolonged time intervals in U937 and JURKAT cell lines. In SRB assay, the PR showed a cell growth of 42.6 and 53.4% comparable to adriamycin; 44.5 and 53.2% in U937 and JURKAT, respectively. The study suggests that PR-4 could emerge as a potential HMT inhibitor. Conclusion: The molecule PR-4 could be a lead in developing more histone lysine methyltransferases inhibitors with potential to be pro-apoptotic agents.


2021 ◽  
Vol 22 (2) ◽  
pp. 488
Author(s):  
Young-Su Yi

Inflammation, an innate immune response that prevents cellular damage caused by pathogens, consists of two successive mechanisms, namely priming and triggering. While priming is an inflammation-preparation step, triggering is an inflammation-activation step, and the central feature of triggering is the activation of inflammasomes and intracellular inflammatory protein complexes. Flavonoids are natural phenolic compounds predominantly present in plants, fruits, and vegetables and are known to possess strong anti-inflammatory activities. The anti-inflammatory activity of flavonoids has long been demonstrated, with the main focus on the priming mechanisms, while increasing numbers of recent studies have redirected the research focus on the triggering step, and studies have reported that flavonoids inhibit inflammatory responses and diseases by targeting inflammasome activation. Rheumatic diseases are systemic inflammatory and autoimmune diseases that primarily affect joints and connective tissues, and they are associated with numerous deleterious effects. Here, we discuss the emerging literature on the ameliorative role of flavonoids targeting inflammasome activation in inflammatory rheumatic diseases.


Sign in / Sign up

Export Citation Format

Share Document