scholarly journals Colistin resistance prevalence in Escherichia coli from domestic animals in intensive breeding farms of Jiangsu Province, China

2018 ◽  
Author(s):  
X. Zhang ◽  
B. Zhang ◽  
Z. Yu ◽  
Y. Guo ◽  
J. Wang ◽  
...  

AbstractThe global dissemination of colistin resistance has received a great deal of attention. Recently, the plasmid-mediated colistin resistance encoded by mcr-1 and mcr-2 genes in Escherichia coli (E.coli) strains from animals, food, and patients in China have been reported continuously. To make clear the colisin resistance and mcr gene spread in domestic animals in Jiangsu Province, we collected fecael swabs from pigs, chicken and cattle at different age distributed in intensive feeding farms. The selected chromogenic agar and mcr-PCR were used to screen the colisin resistance and mcr gene carriage. Colistin resistant E.coli colonies were identified from 54.25 % (440/811) pig faecal swabs, from 35.96 % (443/1232) chicken faecal swabs, and 26.92 % (42/156) from cattle faecal swabs. Of all the colisin resistant E.coli colonies, the positive amplifications of mcr-1 were significantly higher than mcr-2. The mcr-1 prevalence was 68.86 % (303/440) in pigs, 87.58 % (388/443) in chicken, and 71.43 % (30/42), compared with 46.82 % (206/440) in pigs, 14.90 % (66/443) in chicken, and 19.05 % (8/42) in cattle of prevalence of mcr-2. Co-occurrence of mcr-1 and mcr-2 was identified in 20 % (88/440) in pigs, 7.22 % (32/443) in chickens, and in 9.52 % (4/42) cattle. These data indicate that mcr was the most important colistin resistance mechanism. Interventions and alternative options are necessary to minimise further dissemination of mcr between food-producing animals and human.IMPORTANCEColistin is recognized one of the last defence lines for the treatment of highly resistant bacteria, but the emergence of resistance that conferred by a transferable plasmid-mediated mcr genes to this vital antibiotic is extremely disturbing. Here, we used E. coli as an index to monitor drug resistance in domestic animals (pigs, chicken and cattle). It was found that the colistin resistance widely occurred at all ages of domestic animals and the mcr-dependent mechanism dominated in E.coli. We also found that the elder and adult animals were a reservoir of resistant strains, suggesting a potential food safety issue and greater public health problems.

2016 ◽  
Vol 144 (14) ◽  
pp. 2967-2970 ◽  
Author(s):  
D. ORTEGA-PAREDES ◽  
P. BARBA ◽  
J. ZURITA

SUMMARYColistin resistance mediated by the mcr-1 gene has been reported worldwide, but to date not from the Andean region, South America. We report the first clinical isolate of Escherichia coli harbouring the mcr-1 gene in Ecuador. The strain was isolated from peritoneal fluid from a 14-year-old male with acute appendicitis, and subjected to molecular analysis. The minimum inhibitory concentration of colistin for the strain was 8 mg/ml and it was susceptible to carbapenems but resistant to tigecycline. The strain harboured mcr-1 and blaCTX-M-55 genes and was of sequence type 609. The recognition of an apparently commensal strain of E. coli harbouring mcr-1 serves as an alert to the presence in the region of this recently described resistance mechanism to one of the last line of drugs available for the treatment of multi-resistant Gram-negative infections.


2020 ◽  
Author(s):  
BIAGIO SANTELLA ◽  
CARLA ZANNELLA ◽  
CHIARA DEL VECCHIO ◽  
ANNALISA CHIANESE ◽  
VERONICA FOLLIERO ◽  
...  

Abstract Background: The emergence of a novel plasmid-mediated colistin resistance mechanism, encoded by the mcr-1 gene, represents a major public health concern. The mechanism of resistance to colistin, mediated by plasmids, is a serious problem, both for its ability to be transferred to other species, and for infections caused by carbapenem-resistant Gram-negative, in which colistin is used as an antimicrobial drug of last line for the treatment of these infections. The present study highlights the first isolation and genetic evaluation of detecting plasmid-mediated resistance to colistin in a multidrug-resistant (MDR) Escherichia coli (E. coli) isolated from a clinical sample in the metropolitan city of Naples, Italy. Results: Colistin-resistant E. coli isolate was identified in August 2020 from the blood culture of a male patient with multiple comorbidities. The minimum inhibitory concentration (MIC) of colistin was 8 mg/L. In addition to colistin, the isolate was resistant to third-generation cephalosporins (cefotaxime and ceftazidime), penicillin (amoxicillin and piperacillin), aminoglycosides (gentamicin and tobramycin), and fluoroquinolones (ciprofloxacin and levofloxacin). However, it showed susceptibility to carbapenems (ertapenem, imipenem, and meropenem), tetracyclines (tigecycline), and piperacillin-tazobactam. The results of the PCR confirmed the presence of the mcr-1 resistance gene. Conclusion: This study confirms the presence of resistance to colistin mediated by the mcr-1 gene in a clinical isolate of E. coli. Although resistance to colistin caused by the mcr-1 gene is not common in our region, it should not be ignored. Therefore, further surveillance studies are recommended to monitor the spread of plasmid-mediated colistin resistance genes in Gram-negative MDR bacteria.


2020 ◽  
Author(s):  
Jialiang Mai ◽  
Zhile Xiong ◽  
Shuwen Yao ◽  
Xiangtang Chen ◽  
Bingshao Liang ◽  
...  

Abstract Objective: The increase of multidrug resistant Enterobacteriaceae bacteria has led to reintroduction of colistin for clinical treatments, and colistin has become a last resort for infections caused by multidrug resistant bacteria. Enterobacteriaceae bacteria carrying the mcr-1 gene are majorly related to colistin resistance, which may be the main reason for continued increase in the colistin resistance rate of Enterobacteriaceae. The purpose of this study was to investigate the sequence type and prevalence of bacteria harboring mcr-1 gene in the gut flora of children in Southern China. Method: Fecal samples (n=2632) of children from 3 medical centers in Guangzhou were cultured for Escherichia coli (E. coli). The mcr-1-harboring isolates were screened by Polymerase chain reaction (PCR). The colistin resistance transfer frequency was studied by conjugation experiments. DNA sequencing of seven housekeeping genes were used for multi locus sequence typing analysis (MLST).Result: PCR indicated that 21 isolates from the 2632 E. coli (0.80%) were positive for mcr-1; these strains were resistant to colistin. Conjugation experiment indicated that 18 of the mcr-1-harboring isolates could transfer colistin resistance phenotypes to E. coli J53. MLST analysis revealed that the 21 isolates were divided into 18 sequence types (STs); ST69 was the most common (14.3%), followed by ST58 (9.5%). Conclusion: These results demonstrate the colonisation dynamics and molecular epidemiology of mcr-1-harboring E. coli in the gut flora of children in Southern China, and the mcr-1 gene can be horizontally transmitted within species, it is necessary to monitor the mcr-1-harboring bacteria in children.


2019 ◽  
Vol 82 (8) ◽  
pp. 1440-1448 ◽  
Author(s):  
ALESSANDRA BARLAAM ◽  
ANTONIO PARISI ◽  
ELISA SPINELLI ◽  
MARTA CARUSO ◽  
PIETRO DI TARANTO ◽  
...  

ABSTRACT Antimicrobial resistance in bacteria represents one of the most important challenges for public health worldwide. Human infections from antimicrobial-resistant bacteria can be transmitted from person to person, via the environment (especially in the hospital environment), or via handling or eating contaminated foods. Colistin is well known as a last-resort antibiotic for the treatment of human infections; a recent study performed in the People's Republic of China has revealed that colistin resistance is also conferred by the plasmid-mediated mcr-1 gene in Escherichia coli. After that discovery, further plasmid-mediated, colistin resistance genes have been detected. However, to date, only reports on E. coli carrying the mcr-1 gene (E. coli mcr-1+) in foodstuff are available. E. coli mcr-1+ has been isolated from food of animal origin and vegetables; this discovery has opened a debate among food safety experts. This review aims to provide a critical overview of the currently available scientific literature on the presence of the plasmid-mediated, colistin resistance gene E. coli mcr-1 in foodstuffs, focusing on the main implications and future perspectives for food safety.


Author(s):  
Ching-Hsun Wang ◽  
L. Kristopher Siu ◽  
Feng-Yee Chang ◽  
Sheng-Kang Chiu ◽  
Jung-Chung Lin

The molecular epidemiology and resistance mechanisms of mcr -negative colistin-resistant E. coli are not well described. In this study, a total of 11 mcr -negative colistin-resistant E. coli isolates were selected from a nationwide antimicrobial resistance surveillance program in Taiwan for further investigation.


Antibiotics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 850
Author(s):  
Shobha Giri ◽  
Vaishnavi Kudva ◽  
Kalidas Shetty ◽  
Veena Shetty

As the global urban populations increase with rapid migration from rural areas, ready-to-eat (RTE) street foods are posing food safety challenges where street foods are prepared with less structured food safety guidelines in small and roadside outlets. The increased presence of extended-spectrum-β-lactamase (ESBL) producing bacteria in street foods is a significant risk for human health because of its epidemiological significance. Escherichia coli and Klebsiella pneumoniae have become important and dangerous foodborne pathogens globally for their relevance to antibiotic resistance. The present study was undertaken to evaluate the potential burden of antibiotic-resistant E. coli and K. pneumoniae contaminating RTE street foods and to assess the microbiological quality of foods in a typical emerging and growing urban suburb of India where RTE street foods are rapidly establishing with public health implications. A total of 100 RTE food samples were collected of which, 22.88% were E. coli and 27.12% K. pneumoniae. The prevalence of ESBL-producing E. coli and K. pneumoniae was 25.42%, isolated mostly from chutneys, salads, paani puri, and chicken. Antimicrobial resistance was observed towards cefepime (72.9%), imipenem (55.9%), cefotaxime (52.5%), and meropenem (16.9%) with 86.44% of the isolates with MAR index above 0.22. Among β-lactamase encoding genes, blaTEM (40.68%) was the most prevalent followed by blaCTX (32.20%) and blaSHV (10.17%). blaNDM gene was detected in 20.34% of the isolates. This study indicated that contaminated RTE street foods present health risks to consumers and there is a high potential of transferring multi-drug-resistant bacteria from foods to humans and from person to person as pathogens or as commensal residents of the human gut leading to challenges for subsequent therapeutic treatments.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kaitlin S. Witherell ◽  
Jason Price ◽  
Ashok D. Bandaranayake ◽  
James Olson ◽  
Douglas R. Call

AbstractMultidrug-resistant bacteria are a growing global concern, and with increasingly prevalent resistance to last line antibiotics such as colistin, it is imperative that alternative treatment options are identified. Herein we investigated the mechanism of action of a novel antimicrobial peptide (CDP-B11) and its effectiveness against multidrug-resistant bacteria including Escherichia coli #0346, which harbors multiple antibiotic-resistance genes, including mobilized colistin resistance gene (mcr-1). Bacterial membrane potential and membrane integrity assays, measured by flow cytometry, were used to test membrane disruption. Bacterial growth inhibition assays and time to kill assays measured the effectiveness of CDP-B11 alone and in combination with colistin against E. coli #0346 and other bacteria. Hemolysis assays were used to quantify the hemolytic effects of CDP-B11 alone and in combination with colistin. Findings show CDP-B11 disrupts the outer membrane of E. coli #0346. CDP-B11 with colistin inhibits the growth of E. coli #0346 at ≥ 10× lower colistin concentrations compared to colistin alone in Mueller–Hinton media and M9 media. Growth is significantly inhibited in other clinically relevant strains, such as Acinetobacter baumannii, Pseudomonas aeruginosa, and Klebsiella pneumoniae. In rich media and minimal media, the drug combination kills bacteria at a lower colistin concentration (1.25 μg/mL) compared to colistin alone (2.5 μg/mL). In minimal media, the combination is bactericidal with killing accelerated by up to 2 h compared to colistin alone. Importantly, no significant red blood hemolysis is evident for CDP-B11 alone or in combination with colistin. The characteristics of CDP-B11 presented here indicate that it can be used as a potential monotherapy or as combination therapy with colistin for the treatment of multidrug-resistant infections, including colistin-resistant infections.


Antibiotics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 744
Author(s):  
Altaf Bandy ◽  
Bilal Tantry

Antimicrobial-resistance in Enterobacterales is a serious concern in Saudi Arabia. The present study retrospectively analyzed the antibiograms of Enterobacterales identified from 1 January 2019 to 31 December 2019 from a referral hospital in the Aljouf region of Saudi Arabia. The revised document of the Centers for Disease Control (CDC) CR-2015 and Magiorakos et al.’s document were used to define carbapenem resistance and classify resistant bacteria, respectively. The association of carbapenem resistance, MDR, and ESBL with various sociodemographic characteristics was assessed by the chi-square test and odds ratios. In total, 617 Enterobacterales were identified. The predominant (n = 533 (86.4%)) isolates consisted of 232 (37.6%), 200 (32.4%), and 101 (16.4%) Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis, respectively. In general, 432 (81.0%) and 128 (24.0%) isolates were of MDR and ESBL, respectively. The MDR strains were recovered in higher frequency from intensive care units (OR = 3.24 (1.78–5.91); p < 0.01). E. coli and K. pneumoniae resistance rates to imipenem (2.55 (1.21–5.37); p < 0.01) and meropenem (2.18 (1.01–4.67); p < 0.04), respectively, were significantly higher in winter. The data emphasize that MDR isolates among Enterobacterales are highly prevalent. The studied Enterobacterales exhibited seasonal variation in antimicrobial resistance rates towards carbapenems and ESBL activity.


2021 ◽  
Vol 9 (2) ◽  
pp. 326
Author(s):  
Frederick Adzitey ◽  
Nurul Huda ◽  
Amir Husni Mohd Shariff

Meat is an important food source that can provide a significant amount of protein for human development. The occurrence of bacteria that are resistant to antimicrobials in meat poses a public health risk. This study evaluated the occurrence and antimicrobial resistance of E. coli (Escherichia coli) isolated from raw meats, ready-to-eat (RTE) meats and their related samples in Ghana. E. coli was isolated using the USA-FDA Bacteriological Analytical Manual and phenotypic antimicrobial susceptibility test was performed by the disk diffusion method. Of the 200 examined meats and their related samples, 38% were positive for E. coli. Notably, E. coli was highest in raw beef (80%) and lowest in RTE pork (0%). The 45 E. coli isolates were resistant ≥ 50% to amoxicillin, trimethoprim and tetracycline. They were susceptible to azithromycin (87.1%), chloramphenicol (81.3%), imipenem (74.8%), gentamicin (72.0%) and ciprofloxacin (69.5%). A relatively high intermediate resistance of 33.0% was observed for ceftriaxone. E. coli from raw meats, RTE meats, hands of meat sellers and working tools showed some differences and similarities in their phenotypic antimicrobial resistance patterns. Half (51.1%) of the E. coli isolates exhibited multidrug resistance. The E. coli isolates showed twenty-two different resistant patterns, with a multiple antibiotic resistance index of 0.0 to 0.7. The resistant pattern amoxicillin (A, n = 6 isolates) and amoxicillin-trimethoprim (A-TM, n = 6 isolates) were the most common. This study documents that raw meats, RTE meats and their related samples in Ghana are potential sources of antimicrobial-resistant E. coli and pose a risk for the transfer of resistant bacteria to the food chain, environment and humans.


Sign in / Sign up

Export Citation Format

Share Document