scholarly journals Mucosal microbiota and metabolome along the intestinal tracts reveals location specific relationship

2018 ◽  
Author(s):  
Ce Yuan ◽  
Melanie Graham ◽  
Christopher Staley ◽  
Subbaya Subramanian

AbstractBackgroundThe intestinal microbiota has been recognized as an important component for maintaining human health. The perturbation to its structure has been implicated in many diseases, such as obesity and cancers. The microbiota is highly metabolically active and plays a role in many metabolic pathways absent from the human host. Altered microbiota metabolism has also been linked to obesity, cardiovascular disease, and colorectal cancer. However, there is a gap in the current knowledge of how the microbiota interacts with its host. Here we performed an integrated analysis between the mucosal-associated microbiota and the mucosal tissue metabolomics in healthy non-human primates (NHPs) to investigate these relationships.ResultsWe found that the overall microbiota composition is influenced by both the tissue location as well as the host individual. The NHPs intestinal microbiota predominantly comprised of members of the phyla Firmicutes, Bacteroidetes, and Proteobacteria. The large intestines contain more Spirochaetes, Tenericutes, and Lentisphaera phyla members. The small intestinal tissues have no significantly different microbiota compositions, while the cecum and distal colon differ greatly in the microbiota compositions. The metabolomics profile reveals a total of 140 metabolites with different concentration between the small and large intestines. The correlations between microbiota and tissue metabolites showed a dense and interconnected network in the small intestines while a sparse network in the large intestines.ConclusionsOur analysis revealed an intricate global relationship between the microbiota and the host tissue metabolome that is mainly driven by the distal colon. Most importantly, we found location specific microbiota-metabolite correlations that have potential implications for studying host-microbiota metabolic interactions.

mSystems ◽  
2020 ◽  
Vol 5 (3) ◽  
Author(s):  
Ce Yuan ◽  
Melanie Graham ◽  
Christopher Staley ◽  
Subbaya Subramanian

ABSTRACT The intestinal microbiota is highly metabolically active and plays an important role in many metabolic processes absent from the human host. Altered microbiota metabolism has been linked to diseases such as obesity, cardiovascular disease, and colorectal cancer. However, there is a gap in the current knowledge on how the microbiota interact with its host in terms of metabolic interactions. Here, we performed an integrated analysis between the mucosa-associated microbiota and the mucosa metabolome in healthy, nonhuman primates to investigate these relationships. The microbiota composition was distinct at each tissue location, with variation by host individual also observed. Microbiota-metabolome dynamics were primarily driven by interactions in the distal colon. These interactions were strongly correlated with dietary component, indicating a possibility to modulate microbiota-metabolomic interactions using prebiotic strategies. IMPORTANCE In a healthy colon, the microbiota produces a vast amount of metabolites that are essential to maintaining homeostasis in the colon microenvironment. In fact, these metabolites produced by the microbiota have been linked to diseases such as obesity, cardiovascular disease, and colorectal cancer. In this study, we used healthy nonhuman primate models to investigate the relationship between microbiota and tissue metabolites. We found that both microbiota and metabolites have location-specific signatures along the intestine. Most importantly, we found that metabolites from food sources correlate with multiple bacteria in different intestinal locations. Overall, this work presents a systems-level map of the association between the microbiota and the metabolites in healthy nonhuman primates, provides candidates for experimental validation, and suggests a possibility to regulate the gut microbiota through specific prebiotic combinations.


Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 71-OR
Author(s):  
SAVANNA N. WENINGER ◽  
EVE BEAUCHEMIN ◽  
ADELINA I.L. LANE ◽  
RACHEL MEYER ◽  
FRANK DUCA

Biomolecules ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1155
Author(s):  
Eva Garcia-Lopez ◽  
Paula Alcazar ◽  
Cristina Cid

Cold-loving microorganisms of all three domains of life have unique and special abilities that allow them to live in harsh environments. They have acquired structural and molecular mechanisms of adaptation to the cold that include the production of anti-freeze proteins, carbohydrate-based extracellular polymeric substances and lipids which serve as cryo- and osmoprotectants by maintaining the fluidity of their membranes. They also produce a wide diversity of pigmented molecules to obtain energy, carry out photosynthesis, increase their resistance to stress and provide them with ultraviolet light protection. Recently developed analytical techniques have been applied as high-throughoutput technologies for function discovery and for reconstructing functional networks in psychrophiles. Among them, omics deserve special mention, such as genomics, transcriptomics, proteomics, glycomics, lipidomics and metabolomics. These techniques have allowed the identification of microorganisms and the study of their biogeochemical activities. They have also made it possible to infer their metabolic capacities and identify the biomolecules that are parts of their structures or that they secrete into the environment, which can be useful in various fields of biotechnology. This Review summarizes current knowledge on psychrophiles as sources of biomolecules and the metabolic pathways for their production. New strategies and next-generation approaches are needed to increase the chances of discovering new biomolecules.


Nutrients ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 2428
Author(s):  
Małgorzata Guz ◽  
Witold Jeleniewicz ◽  
Anna Malm ◽  
Izabela Korona-Glowniak

A still growing interest between human nutrition in relation to health and disease states can be observed. Dietary components shape the composition of microbiota colonizing our gastrointestinal tract which play a vital role in maintaining human health. There is a strong evidence that diet, gut microbiota and their metabolites significantly influence our epigenome, particularly through the modulation of microRNAs. These group of small non-coding RNAs maintain cellular homeostasis, however any changes leading to impaired expression of miRNAs contribute to the development of different pathologies, including neoplastic diseases. Imbalance of intestinal microbiota due to diet is primary associated with the development of colorectal cancer as well as other types of cancers. In the present work we summarize current knowledge with particular emphasis on diet-microbiota-miRNAs axis and its relation to the development of colorectal cancer.


2021 ◽  
Vol 22 (6) ◽  
pp. 3245
Author(s):  
Luca X. Zampieri ◽  
Catarina Silva-Almeida ◽  
Justin D. Rondeau ◽  
Pierre Sonveaux

Depending on their tissue of origin, genetic and epigenetic marks and microenvironmental influences, cancer cells cover a broad range of metabolic activities that fluctuate over time and space. At the core of most metabolic pathways, mitochondria are essential organelles that participate in energy and biomass production, act as metabolic sensors, control cancer cell death, and initiate signaling pathways related to cancer cell migration, invasion, metastasis and resistance to treatments. While some mitochondrial modifications provide aggressive advantages to cancer cells, others are detrimental. This comprehensive review summarizes the current knowledge about mitochondrial transfers that can occur between cancer and nonmalignant cells. Among different mechanisms comprising gap junctions and cell-cell fusion, tunneling nanotubes are increasingly recognized as a main intercellular platform for unidirectional and bidirectional mitochondrial exchanges. Understanding their structure and functionality is an important task expected to generate new anticancer approaches aimed at interfering with gains of functions (e.g., cancer cell proliferation, migration, invasion, metastasis and chemoresistance) or damaged mitochondria elimination associated with mitochondrial transfer.


2021 ◽  
Vol 75 (1) ◽  
Author(s):  
Toni Gabaldón

The origin of eukaryotes has been defined as the major evolutionary transition since the origin of life itself. Most hallmark traits of eukaryotes, such as their intricate intracellular organization, can be traced back to a putative common ancestor that predated the broad diversity of extant eukaryotes. However, little is known about the nature and relative order of events that occurred in the path from preexisting prokaryotes to this already sophisticated ancestor. The origin of mitochondria from the endosymbiosis of an alphaproteobacterium is one of the few robustly established events to which most hypotheses on the origin of eukaryotes are anchored, but the debate is still open regarding the time of this acquisition, the nature of the host, and the ecological and metabolic interactions between the symbiotic partners. After the acquisition of mitochondria, eukaryotes underwent a fast radiation into several major clades whose phylogenetic relationships have been largely elusive. Recent progress in the comparative analyses of a growing number of genomes is shedding light on the early events of eukaryotic evolution as well as on the root and branching patterns of the tree of eukaryotes. Here I discuss current knowledge and debates on the origin and early evolution of eukaryotes. I focus particularly on how phylogenomic analyses have challenged some of the early assumptions about eukaryotic evolution, including the widespread idea that mitochondrial symbiosis in an archaeal host was the earliest event in eukaryogenesis. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2021 ◽  
Vol 75 ◽  
pp. 283-291
Author(s):  
Agata Janczy ◽  
Magdalena Landowska ◽  
Zdzisław Kochan

Anorexia nervosa (AN) is described as an eating disorder, which is characterized by malnutrition, a fear of gaining body mass, and a disturbed self-body image. This disease is dependent on biological, psychological and socio-cultural factors. Among the various biological factors, the importance of intestinal microbiota has recently attracted much attention. Identification of the gut microbiota dysbiosis in patients with AN has opened new and promising research directions. Recent observations focus in particular on the association between intestinal microorganisms and the occurrence of functional gastrointestinal disorders associated with anorexia, anxiety and depression, as well as the regulation of eating habits. The composition of the gut microbiota differs between patients with AN and individuals with normal body mass. This is due to the incorrect diet of patients; on the other hand, there is growing interest in the role of intestinal microbiota in the pathogenesis of AN, its changes through re-nutrition practices, and in particular the modulation of intestinal microbiological composition by means of nutritional interventions or the use of preand probiotics as standard supplements therapy of eating disorders. There is a need for further research about the microbiome - intestine - brain axis. Furthermore, consequences of changes in dietary habits as part of AN treatment are also unknown. However, better knowledge about the relationship between the gut microbiome and the brain can help improve the treatment of this disorder. This review aims to present the current knowledge about the potential role of intestinal microbiota in the pathogenesis, course and treatment of AN.


2019 ◽  
Vol 10 (7) ◽  
pp. 4372-4380 ◽  
Author(s):  
Li-Chun Chen ◽  
Zhong-Yang Fan ◽  
Hong-Yu Wang ◽  
Dong-Cheng Wen ◽  
Shi-Yu Zhang

The hypoglycemic effects of PAS in type-2 diabetic mice (T2D) may be associated with the regulation of the intestinal microbiota and its metabolic pathways.


2020 ◽  
Vol 41 (9) ◽  
pp. 1219-1228
Author(s):  
Seçil Demirkol Canlı ◽  
Esin Gülce Seza ◽  
Ilir Sheraj ◽  
Ismail Gömçeli ◽  
Nesrin Turhan ◽  
...  

Abstract AKR1B1 and AKR1B10, members of the aldo-keto reductase family of enzymes that participate in the polyol pathway of aldehyde metabolism, are aberrantly expressed in colon cancer. We previously showed that high expression of AKR1B1 (AKR1B1HIGH) was associated with enhanced motility, inflammation and poor clinical outcome in colon cancer patients. Using publicly available datasets and ex vivo gene expression analysis (n = 51, Ankara cohort), we have validated our previous in silico finding that AKR1B1HIGH was associated with worse overall survival (OS) compared with patients with low expression of AKR1B1 (AKR1B1LOW) samples. A combined signature of AKR1B1HIGH and AKR1B10LOW was significantly associated with worse recurrence-free survival (RFS) in microsatellite stable (MSS) patients and in patients with distal colon tumors as well as a higher mesenchymal signature when compared with AKR1B1LOW/AKR1B10HIGH tumors. When the patients were stratified according to consensus molecular subtypes (CMS), AKR1B1HIGH/AKR1B10LOW samples were primarily classified as CMS4 with predominantly mesenchymal characteristics while AKR1B1LOW/AKR1B10HIGH samples were primarily classified as CMS3 which is associated with metabolic deregulation. Reverse Phase Protein Array carried out using protein samples from the Ankara cohort indicated that AKR1B1HIGH/AKR1B10LOW tumors showed aberrant activation of metabolic pathways. Western blot analysis of AKR1B1HIGH/AKR1B10LOW colon cancer cell lines also suggested aberrant activation of nutrient-sensing pathways. Collectively, our data suggest that the AKR1B1HIGH/AKR1B10LOW signature may be predictive of poor prognosis, aberrant activation of metabolic pathways, and can be considered as a novel biomarker for colon cancer prognostication.


Sign in / Sign up

Export Citation Format

Share Document