scholarly journals Pyrophosphate modulates stress responses via SUMOylation

2018 ◽  
Author(s):  
Görkem Patir-Nebioglu ◽  
Zaida Andrés ◽  
Melanie Krebs ◽  
Fabian Fink ◽  
Katarzyna Drzewicka ◽  
...  

Pyrophosphate (PPi), a byproduct of macromolecule biosynthesis is maintained at low levels by soluble inorganic pyrophosphatases (sPPase) found in all eukaryotes. In plants, H+-pumping pyrophosphatases (H+-PPase) convert the substantial energy present in PPi into an electrochemical gradient. We show here, that both cold- and heat stress sensitivity of fugu5 mutants lacking the major H+-PPase isoform AVP1 is caused by reduced SUMOylation. In addition, we show that increased PPi concentrations interfere with SUMOylation in yeast and we provide evidence that SUMO activating E1-enzymes are inhibited by micromolar concentrations of PPi in a non-competitive manner. Taken together, our results do not only provide a mechanistic explanation for the beneficial effects of AVP1 overexpression in plants but they also highlight PPi as an important integrator of metabolism and stress tolerance in eukaryotes.

eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
M Görkem Patir-Nebioglu ◽  
Zaida Andrés ◽  
Melanie Krebs ◽  
Fabian Fink ◽  
Katarzyna Drzewicka ◽  
...  

Pyrophosphate (PPi), a byproduct of macromolecule biosynthesis is maintained at low levels by soluble inorganic pyrophosphatases (sPPase) found in all eukaryotes. In plants, H+-pumping pyrophosphatases (H+-PPase) convert the substantial energy present in PPi into an electrochemical gradient. We show here, that both cold- and heat stress sensitivity of fugu5 mutants lacking the major H+-PPase isoform AVP1 is correlated with reduced SUMOylation. In addition, we show that increased PPi concentrations interfere with SUMOylation in yeast and we provide evidence that SUMO activating E1-enzymes are inhibited by micromolar concentrations of PPi in a non-competitive manner. Taken together, our results do not only provide a mechanistic explanation for the beneficial effects of AVP1 overexpression in plants but they also highlight PPi as an important integrator of metabolism and stress tolerance.


Author(s):  
Ajay Singh ◽  
Mahesh Kumar ◽  
Susheel Raina ◽  
Milind Ratnaparkhe ◽  
Jagadish Rane ◽  
...  

FAD3 play important roles in modulating membrane fluidity in response to various abiotic stresses. However, a comprehensive analysis of FAD3 in drought, salinity and heat stress tolerance is lacking in soybean. The present study assessed the functional role of fatty acid desaturase 3 to abiotic stress responses in soybean. We used Bean Pod Mottle Virus -based vector to alter expression of Glycine max omega-3 fatty acid desaturase . Higher levels of recombinant BPMV-GmFAD3 transcripts were detected in overexpressing soybean plants. Overexpression of GmFAD3 in soybean resulted in increased levels of jasmonic acid and higher expression of GmWRKY54 as compared to mock-inoculated, vector-infected and FAD3-silenced soybean plants under drought and salinity stress conditions. FAD3 overexpressing plants showed higher levels of chlorophyll content, leaf SPAD value, relative water content, chlorophyll fluorescence, transpiration rate, carbon assimilation rate, proline content and also cooler canopy under drought and salinity stress conditions as compared to mock-inoculated, vector-infected and FAD3-silenced soybean plants. Results from current study revealed that GmFAD3 overexpressing soybean plants exhibited drought and salinity stress tolerance although tolerance to heat stress was reduced. On the other hand, soybean plants silenced for GmFAD3 exhibited tolerance to heat stress, but were vulnerable to drought and salinity stress


Foods ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 30
Author(s):  
Jacinta Collado-González ◽  
María Carmen Piñero ◽  
Ginés Otálora ◽  
Josefa López-Marín ◽  
Francisco M. del Amor

In the last decades, cauliflower consumption has increased due to its observed beneficial effects on human health, especially on chronic diseases. Furthermore, the use of arginine has been shown to improve the heat stress tolerance of plants by increasing the polyamine content. Thus, we aimed to investigate the effects of the exogenous application of arginine on the physical and chemical quality parameters of cauliflower florets under heat stress. For this, we applied two concentrations of arginine (1 and 4 mM) to the leaves of cauliflower (Brassica oleracea var. botrytis L.) plants grown in three different temperatures (ambient, elevated, and extreme). Our data show that potassium and phosphate, as well as iron were the most abundant macro- and micronutrients, respectively. The combination of high temperature and exogenous application of arginine increased the antioxidant activity, total content of phenolic compounds, polyamines, and proteins. The data presented herein indicate that the combination of an adequate heat stress and the appropriate foliar arginine treatment may be a useful strategy that could be used to increase the number of valuable plant compounds in our diet.


2015 ◽  
Vol 140 (3) ◽  
pp. 257-264 ◽  
Author(s):  
Zipeng Tian ◽  
Bingru Huang ◽  
Faith C. Belanger

Strong creeping red fescue (Festuca rubra ssp. rubra) is an important cool season turfgrass species. Cultivars are often infected with the fungal endophyte Epichloë festucae. Endophyte infection is known to confer insect and disease resistance to the plants. The effect of endophyte infection on drought or heat stress tolerance of strong creeping red fescue is not yet established. The objectives of this controlled-environment study were to determine if endophyte infection had any effect on physiological parameters associated with plant tolerance to drought or heat stress or the combination of the two stresses. In this study, endophyte status had no effect on turf quality (TQ), relative water content (RWC), photochemical efficiency, chlorophyll content, electrolyte leakage (EL), or malondialdehyde (MDA) content of the plants under any of the stress treatments. Our results suggested that E. festucae infection had no physiological effects on improving drought, heat or the combined stress tolerance in strong creeping red fescue.


2019 ◽  
Vol 20 (20) ◽  
pp. 5173 ◽  
Author(s):  
Ok Jin Hwang ◽  
Kyoungwhan Back

Melatonin has long been recognized as a positive signaling molecule and potent antioxidant in plants, which alleviates damage caused by adverse conditions such as salt, cold, and heat stress. In this study, we found a paradoxical role for melatonin in abiotic stress responses. Suppression of the serotonin N-acetyltransferase 2 (snat2) gene encoding the penultimate enzyme in melatonin biosynthesis led to simultaneous decreases in both melatonin and brassinosteroid (BR) levels, causing a semi-dwarf with erect leaf phenotype, typical of BR deficiency. Here, we further characterized snat2 rice in terms of grain morphology and abiotic stress tolerance, to determine whether snat2 rice exhibited characteristics similar to those of BR-deficient rice. As expected, the snat2 rice exhibited tolerance to multiple stress conditions including cadmium, salt, cold, and heat, as evidenced by decreased malondialdehyde (MDA) levels and increased chlorophyll levels, in contrast with SNAT2 overexpression lines, which were less tolerant to stress than wild type plants. In addition, the length and width of grain from snat2 plants were reduced relative to the wild type, which is reminiscent of BR deficiency in rice. Other melatonin-deficient mutant rice lines with suppressed BR synthesis (i.e., comt and t5h) also showed tolerance to salt and heat stress, whereas melatonin-deficient rice seedlings without decreased BR levels (i.e., tdc) failed to exhibit increased stress tolerance, suggesting that stress tolerance was increased not by melatonin deficiency alone, but by a melatonin deficiency-mediated decrease in BR.


2020 ◽  
Vol 98 (Supplement_3) ◽  
pp. 7-7
Author(s):  
Betty R McConn ◽  
Alan W Duttlinger ◽  
Kouassi R Kpodo ◽  
Jacob M Maskal ◽  
Brianna N Gaskill ◽  
...  

Abstract Pregnant sows, especially during late-gestation, may be susceptible to heat stress due to increased metabolic heat production and body mass. Therefore, the study objective was to determine the thermoregulatory and physiological responses of sows exposed to increasing ambient temperature (TA) at 3 reproductive stages. In 3 repetitions, 27 multiparous sows (parity 3.22±0.89) were individually housed and had jugular catheters placed 5.0±1.0 d prior to the experiment. To differentiate between reproductive stages, sows were categorized as open (not pregnant, n=9), mid-gestation (59.7±9.6 days pregnant, n=9), or late-gestation (99.0±4.8 days pregnant, n=9). During the experiment, sows were exposed to 6 consecutive 1 h periods of increasing TA (period 1, 14.39±2.14°C; period 2, 16.20±1.39°C; period 3, 22.09±1.87°C; period 4, 26.34±1.39°C; period 5, 30.56±0.81°C; period 6, 35.07±0.96°C), with 1 h transition phases in between each period. Respiration rate (RR), heart rate (HR), skin temperature, and vaginal temperature (TV) were measured every 20 min and the mean was calculated for each period. At the end of each period, blood gases, leukocytes, and red blood cell counts were measured. Overall, RR and HR were greater (P≤0.04; 45.6% and 12.9%, respectively) in late-gestation versus mid-gestation sows. Compared to mid-gestation and open sows, TV tended to be greater (P=0.06) during period 4 (0.18°C and 0.29°C, respectively) and period 5 (0.14°C and 0.18°C, respectively) in late-gestation sows. Blood O2 increased (P< 0.01; 18.1%) for all sows with advancing period, regardless of reproductive stage. Late-gestation sows had reduced (P=0.02; 16.1%) blood CO2 compared to mid-gestation sows, regardless of period. In summary, late-gestation sows appear to be more sensitive to increasing TA as indicated by increased RR, HR, TV, and blood O2, and reduced blood CO2 when compared to mid-gestation or open sows. This change in O2 and CO2, due to increasing RR and heat stress sensitivity of late-gestation sows, may suggest an alteration to the acid-base balance, leading to respiratory alkalosis.


Author(s):  
Peter Poór ◽  
Kashif Nawaz ◽  
Ravi Gupta ◽  
Farha Ashfaque ◽  
M. Iqbal R. Khan

2021 ◽  
Vol 19 (1) ◽  
pp. 74-89
Author(s):  
Amandeep Kaur ◽  
Parveen Chhuneja ◽  
Puja Srivastava ◽  
Kuldeep Singh ◽  
Satinder Kaur

AbstractAddressing the impact of heat stress during flowering and grain filling is critical to sustaining wheat productivity to meet a steadily increasing demand from a rapidly growing world population. Crop wild progenitor species of wheat possess a wealth of genetic diversity for several biotic and abiotic stresses, and morphological traits and can serve as valuable donors. The transfer of useful variation from the diploid progenitor, Aegilops tauschii, to hexaploid wheat can be done through the generation of synthetic hexaploid wheat (SHW). The present study targeted the identification of potential primary SHWs to introduce new genetic variability for heat stress tolerance. Selected SHWs were screened for different yield-associated traits along with three advanced breeding lines and durum parents as checks for assessing terminal heat stress tolerance under timely and late sown conditions for two consecutive seasons. Heat tolerance index based on the number of productive tillers and thousand grain weight indicated that three synthetics, syn9809 (64.32, 78.80), syn14128 (50.30, 78.28) and syn14135 (58.16, 76.03), were able to endure terminal heat stress better than other SHWs as well as checks. One of these synthetics, syn14128, recorded a minimum reduction in thousand kernel weight (21%), chlorophyll content (2.56%), grain width (1.07%) despite minimum grain-filling duration (36.15 d) and has been selected as a potential candidate for introducing the terminal heat stress tolerance in wheat breeding programmes. Breeding efforts using these candidate donors will help develop lines with a higher potential to express the desired heat stress-tolerant phenotype under field conditions.


Sign in / Sign up

Export Citation Format

Share Document