scholarly journals Interspecies bacterial competition determines community assembly in the C. elegans intestine

2019 ◽  
Author(s):  
Anthony Ortiz Lopez ◽  
Nicole M. Vega ◽  
Jeff Gore

AbstractFrom insects to mammals, a large variety of animals hold in their intestines complex bacterial communities that play an important role in health and disease. However, the complexity of these gut microbiomes and their hosts often constrains our ability to understand how these bacterial communities assemble and function. In order to elucidate basic principles of community assembly in a host intestine, we study the assembly of the microbiome of Caenorhabditis elegans with a bottom-up approach. We colonize the gut of the worm C. elegans with 11 bacterial species individually, in all possible pairs, and in selected trios, and we find an organized mixture of coexistence and competitive exclusion that indicates a hierarchical structure in the bacterial interactions. The capacity of a bacterial species fed in monoculture to colonize the C. elegans intestine correlates with its average fraction in co-culture experiments, yet fails to predict its abundance in many two- and three-species microbiomes. Hence, the bacterial fractional abundances in co-culture experiments—pairwise outcomes—are influenced by interspecies interactions. These pairwise outcomes accurately predict the trio outcomes in the worm intestine, further highlighting the importance of pairwise interactions in determining community composition. We also find that the C. elegans gut environment influences the outcome of co-culture experiments, and demonstrate that the low intestinal pH is one of the causes. These results highlight that a bottom-up approach to microbiome community assembly may provide valuable insight into the structure and composition of complex microbial communities.

2021 ◽  
Author(s):  
Anthony Ortiz ◽  
Nicole M. Vega ◽  
Christoph Ratzke ◽  
Jeff Gore

AbstractFrom insects to mammals, a large variety of animals hold in their intestines complex bacterial communities that play an important role in health and disease. To further our understanding of how intestinal bacterial communities assemble and function, we study the C. elegans microbiota with a bottom-up approach by feeding this nematode with bacterial monocultures as well as mixtures of two to eight bacterial species. We find that bacteria colonizing well in monoculture do not always do well in co-cultures due to interspecies bacterial interactions. Moreover, as community diversity increases, the ability to colonize the worm gut in monoculture becomes less important than interspecies interactions for determining community assembly. To explore the role of host–microbe adaptation, we compare bacteria isolated from C. elegans intestines and non-native isolates, and we find that the success of colonization is determined more by a species’ taxonomy than by the isolation source. Lastly, by comparing the assembled microbiotas in two C. elegans mutants, we find that innate immunity via the p38 MAPK pathway decreases bacterial abundances yet has little influence on microbiota composition. These results highlight that bacterial interspecies interactions, more so than host–microbe adaptation or gut environmental filtering, play a dominant role in the assembly of the C. elegans microbiota.


2020 ◽  
Vol 96 (3) ◽  
Author(s):  
Gavin J Fenske ◽  
Sudeep Ghimire ◽  
Linto Antony ◽  
Jane Christopher-Hennings ◽  
Joy Scaria

ABSTRACT Bacterial communities resident in the hindgut of pigs, have profound impacts on health and disease. Investigations into the pig microbiome have utilized either culture-dependent, or far more commonly, culture-independent techniques using next generation sequencing. We contend that a combination of both approaches generates a more coherent view of microbiome composition. In this study, we surveyed the microbiome of Tamworth breed and feral pigs through the integration high throughput culturing and shotgun metagenomics. A single culture medium was used for culturing. Selective screens were added to the media to increase culture diversity. In total, 46 distinct bacterial species were isolated from the Tamworth and feral samples. Selective screens successfully shifted the diversity of bacteria on agar plates. Tamworth pigs are highly dominated by Bacteroidetes primarily composed of the genus Prevotella whereas feral samples were more diverse with almost equal proportions of Firmicutes and Bacteroidetes. The combination of metagenomics and culture techniques facilitated a greater retrieval of annotated genes than either method alone. The single medium based pig microbiota library we report is a resource to better understand pig gut microbial ecology and function. It allows for assemblage of defined bacterial communities for studies in bioreactors or germfree animal models.


Author(s):  
Aurélie Baliarda ◽  
Michèle Winkler ◽  
Laurent Tournier ◽  
Colin Tinsley ◽  
Stéphane Aymerich

Interspecific interactions within biofilms determine relative species abundance, growth dynamics, community resilience, and success or failure of invasion by an extraneous organism. However, deciphering interspecific interactions and assessing their contribution to biofilm properties and function remain a challenge. Here, we describe the constitution of a model biofilm composed of four bacterial species belonging to four different genera (Rhodocyclus sp., Pseudomonas fluorescens, Kocuria varians, and Bacillus cereus), derived from a biofilm isolated from an industrial milk pasteurization unit. We demonstrate that the growth dynamics and equilibrium composition of this biofilm are highly reproducible. Based on its equilibrium composition, we show that the establishment of this 4-species biofilm is highly robust against initial, transient perturbations but less so towards continuous perturbations. By comparing biofilms formed from different numbers and combinations of the constituent species and by fitting a growth model to the experimental data, we reveal a network of dynamic, positive, and negative interactions that determine the final composition of the biofilm. Furthermore, we reveal that the molecular determinant of one negative interaction is the thiocillin I synthesized by the B. cereus strain, and demonstrate its importance for species distribution and its impact on robustness by mutational analysis of the biofilm ecosystem.


Author(s):  
Samir Giri ◽  
Leonardo Oña ◽  
Silvio Waschina ◽  
Shraddha Shitut ◽  
Ghada Yousif ◽  
...  

AbstractThe exchange of metabolites among different bacterial genotypes is key for determining the structure and function of microbial communities. However, the factors that govern the establishment of these cross-feeding interactions remain poorly understood. While kin selection theory predicts that individuals should direct benefits preferentially to close relatives, the potential benefits resulting from a metabolic exchange may be larger for more distantly related species. Here we distinguish between these two possibilities by performing pairwise cocultivation experiments between auxotrophic recipients and 25 species of potential amino acid donors. Auxotrophic recipients were able to grow in the vast majority of pairs tested (78%), suggesting that metabolic cross-feeding interactions are readily established. Strikingly, both the phylogenetic distance between donor and recipient as well as the dissimilarity of their metabolic networks was positively associated with the growth of auxotrophic recipients. Finally, this result was corroborated in an in-silico analysis of a co-growth of species from a gut microbial community. Together, these findings suggest metabolic cross-feeding interactions are more likely to establish between strains that are metabolically more dissimilar. Thus, our work identifies a new rule of microbial community assembly, which can help predict, understand, and manipulate natural and synthetic microbial systems.SignificanceMetabolic cross-feeding is critical for determining the structure and function of natural microbial communities. However, the rules that determine the establishment of these interactions remain poorly understood. Here we systematically analyze the propensity of different bacterial species to engage in unidirectional cross-feeding interactions. Our results reveal that synergistic growth was prevalent in the vast majority of cases analyzed. Moreover, both phylogenetic and metabolic dissimilarity between donors and recipients favored a successful establishment of metabolite exchange interactions. This work identifies a new rule of microbial community assembly that can help predict, understand, and manipulate microbial communities for diverse applications.


2019 ◽  
Vol 4 (3) ◽  
pp. 474-482
Author(s):  
Sarah L. Schneider

PurposeVocal fold motion impairment (VFMI) can be the result of iatrogenic or traumatic injury or may be idiopathic in nature. It can result in glottic incompetence leading to changes in vocal quality and ease. Associated voice complaints may include breathiness, roughness, diplophonia, reduced vocal intensity, feeling out of breath with talking, and vocal fatigue with voice use. A comprehensive interprofessional voice evaluation includes auditory-perceptual voice evaluation, laryngeal examination including videostroboscopy, acoustic and aerodynamic voice measures. These components provide valuable insight into laryngeal structure and function and individual voice use patterns and, in conjunction with stimulability testing, help identify candidacy for voice therapy and choice of therapeutic techniques.ConclusionA comprehensive, interprofessional evaluation of patients with VFMI is necessary to assess the role of voice therapy and develop a treatment plan. Although there is no efficacy data to support specific voice therapy techniques for treating VFMI, considerations for various techniques are provided.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Young Kyung Kim ◽  
Keunje Yoo ◽  
Min Sung Kim ◽  
Il Han ◽  
Minjoo Lee ◽  
...  

Abstract Bacterial communities in wastewater treatment plants (WWTPs) affect plant functionality through their role in the removal of pollutants from wastewater. Bacterial communities vary extensively based on plant operating conditions and influent characteristics. The capacity of WWTPs can also affect the bacterial community via variations in the organic or nutrient composition of the influent. Despite the importance considering capacity, the characteristics that control bacterial community assembly are largely unknown. In this study, we discovered that bacterial communities in WWTPs in Korea and Vietnam, which differ remarkably in capacity, exhibit unique structures and interactions that are governed mainly by the capacity of WWTPs. Bacterial communities were analysed using 16S rRNA gene sequencing and exhibited clear differences between the two regions, with these differences being most pronounced in activated sludge. We found that capacity contributed the most to bacterial interactions and community structure, whereas other factors had less impact. Co-occurrence network analysis showed that microorganisms from high-capacity WWTPs are more interrelated than those from low-capacity WWTPs, which corresponds to the tighter clustering of bacterial communities in Korea. These results will contribute to the understanding of bacterial community assembly in activated sludge processing.


2019 ◽  
Vol 10 (1) ◽  
pp. 199-210 ◽  
Author(s):  
Chuanman Zhou ◽  
Jintao Luo ◽  
Xiaohui He ◽  
Qian Zhou ◽  
Yunxia He ◽  
...  

NALCN (Na+leak channel, non-selective) is a conserved, voltage-insensitive cation channel that regulates resting membrane potential and neuronal excitability. UNC79 and UNC80 are key regulators of the channel function. However, the behavioral effects of the channel complex are not entirely clear and the neurons in which the channel functions remain to be identified. In a forward genetic screen for C. elegans mutants with defective avoidance response to the plant hormone methyl salicylate (MeSa), we isolated multiple loss-of-function mutations in unc-80 and unc-79. C. elegans NALCN mutants exhibited similarly defective MeSa avoidance. Interestingly, NALCN, unc-80 and unc-79 mutants all showed wild type-like responses to other attractive or repelling odorants, suggesting that NALCN does not broadly affect odor detection or related forward and reversal behaviors. To understand in which neurons the channel functions, we determined the identities of a subset of unc-80-expressing neurons. We found that unc-79 and unc-80 are expressed and function in overlapping neurons, which verified previous assumptions. Neuron-specific transgene rescue and knockdown experiments suggest that the command interneurons AVA and AVE and the anterior guidepost neuron AVG can play a sufficient role in mediating unc-80 regulation of the MeSa avoidance. Though primarily based on genetic analyses, our results further imply that MeSa might activate NALCN by direct or indirect actions. Altogether, we provide an initial look into the key neurons in which the NALCN channel complex functions and identify a novel function of the channel in regulating C. elegans reversal behavior through command interneurons.


2021 ◽  
Vol 22 (7) ◽  
pp. 3438
Author(s):  
Juan Liu ◽  
Xiangwei He ◽  
Jingya Sun ◽  
Yuchao Ma

Bacterial communities associated with roots influence the health and nutrition of the host plant. However, the microbiome discrepancy are not well understood under different healthy conditions. Here, we tested the hypothesis that rhizosphere soil microbial diversity and function varies along a degeneration gradient of poplar, with a focus on plant growth promoting bacteria (PGPB) and antibiotic resistance genes. Comprehensive metagenomic analysis including taxonomic investigation, functional detection, and ARG (antibiotics resistance genes) annotation revealed that available potassium (AK) was correlated with microbial diversity and function. We proposed several microbes, Bradyrhizobium, Sphingomonas, Mesorhizobium, Nocardioides, Variovorax, Gemmatimonadetes, Rhizobacter, Pedosphaera, Candidatus Solibacter, Acidobacterium, and Phenylobacterium, as candidates to reflect the soil fertility and the plant health. The highest abundance of multidrug resistance genes and the four mainly microbial resistance mechanisms (antibiotic efflux, antibiotic target protection, antibiotic target alteration, and antibiotic target replacement) in healthy poplar rhizosphere, corroborated the relationship between soil fertility and microbial activity. This result suggested that healthy rhizosphere soil harbored microbes with a higher capacity and had more complex microbial interaction network to promote plant growing and reduce intracellular levels of antibiotics. Our findings suggested a correlation between the plant degeneration gradient and bacterial communities, and provided insight into the role of high-turnover microbial communities as well as potential PGPB as real-time indicators of forestry soil quality, and demonstrated the inner interaction contributed by the bacterial communities.


2021 ◽  
Vol 22 (2) ◽  
pp. 478
Author(s):  
Kai-Wei Yu ◽  
Peng Xue ◽  
Yang Fu ◽  
Liang Yang

The bacterial type VI secretion system (T6SS) is a protein secretion apparatus widely distributed in Gram-negative bacterial species. Many bacterial pathogens employ T6SS to compete with the host and to coordinate the invasion process. The T6SS apparatus consists of a membrane complex and an inner tail tube-like structure that is surrounded by a contractile sheath and capped with a spike complex. A series of antibacterial or antieukaryotic effectors is delivered by the puncturing device consisting of a Hcp tube decorated by the VgrG/PAAR complex into the target following the contraction of the TssB/C sheath, which often leads to damage and death of the competitor and/or host cells. As a tool for protein secretion and interspecies interactions, T6SS can be triggered by many different mechanisms to respond to various physiological conditions. This review summarizes our current knowledge of T6SS in coordinating bacterial stress responses against the unfavorable environmental and host conditions.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Scott Takeo Aoki ◽  
Tina R. Lynch ◽  
Sarah L. Crittenden ◽  
Craig A. Bingman ◽  
Marvin Wickens ◽  
...  

AbstractCytoplasmic RNA–protein (RNP) granules have diverse biophysical properties, from liquid to solid, and play enigmatic roles in RNA metabolism. Nematode P granules are paradigmatic liquid droplet granules and central to germ cell development. Here we analyze a key P granule scaffolding protein, PGL-1, to investigate the functional relationship between P granule assembly and function. Using a protein–RNA tethering assay, we find that reporter mRNA expression is repressed when recruited to PGL-1. We determine the crystal structure of the PGL-1 N-terminal region to 1.5 Å, discover its dimerization, and identify key residues at the dimer interface. Mutations of those interface residues prevent P granule assembly in vivo, de-repress PGL-1 tethered mRNA, and reduce fertility. Therefore, PGL-1 dimerization lies at the heart of both P granule assembly and function. Finally, we identify the P granule-associated Argonaute WAGO-1 as crucial for repression of PGL-1 tethered mRNA. We conclude that P granule function requires both assembly and localized regulators.


Sign in / Sign up

Export Citation Format

Share Document