scholarly journals Multiplexed CRISPR-Cas9 based genome editing of Rhodosporidium toruloides

2019 ◽  
Author(s):  
Peter B. Otoupal ◽  
Masakazu Ito ◽  
Adam P. Arkin ◽  
Jon K. Magnuson ◽  
John M. Gladden ◽  
...  

ABSTRACTMicrobial production of biofuels and bioproducts offers a sustainable and economic alternative to petroleum-based fuels and chemicals. The basidiomycete yeast Rhodosporidium toruloides is a promising platform organism for generating bioproducts due to its ability to consume a broad spectrum of carbon sources (including those derived from lignocellulosic biomass) and to naturally accumulate high levels of lipids and carotenoids, two biosynthetic pathways that can be leveraged to produce a wide range of bioproducts. While R. toruloides has great potential, it has a more limited set of tools for genetic engineering relative to more advanced yeast platform organisms such as Yarrowia lipolytica and Saccharomyces cerevisiae. Significant advancements in the past few years have bolstered R. toruloides’ engineering capacity. Here we expand this capacity by demonstrating the first use of CRISPR-Cas9 based gene disruption in R. toruloides. Stably integrating a Cas9 expression cassette into the genome brought about successful targeted disruption of the native URA3 gene. While editing efficiencies were initially low (0.002%), optimization of the cassette increased efficiencies 364-fold (to 0.6%). Applying these optimized design conditions enabled disruption of another native gene involved in carotenoid biosynthesis, CAR2, with much greater success; editing efficiencies of CAR2 deletion reached roughly 50%. Finally, we demonstrated efficient multiplexed genome editing by disrupting both CAR2 and URA3 in a single transformation. Together, our results provide a framework for applying CRISPR-Cas9 to R. toruloides that will facilitate rapid and high throughput genome engineering in this industrially relevant organism.IMPORTANCEMicrobial biofuel and bioproduct platforms provide access to clean and renewable carbon sources that are more sustainable and environmentally friendly than petroleum-based carbon sources. Furthermore, they can serve as useful conduits for the synthesis of advanced molecules that are difficult to produce through strictly chemical means. R. toruloides has emerged as a promising potential host for converting renewable lignocellulosic material into valuable fuels and chemicals. However, engineering efforts to improve the yeast’s production capabilities have been impeded by a lack of advanced tools for genome engineering. While this is rapidly changing, one key tool remains unexplored in R. toruloides; CRISPR-Cas9. The results outlined here demonstrate for the first time how effective multiplexed CRISPR-Cas9 gene disruption provides a framework for other researchers to utilize this revolutionary genome-editing tool effectively in R. toruloides.

mSphere ◽  
2019 ◽  
Vol 4 (2) ◽  
Author(s):  
Peter B. Otoupal ◽  
Masakazu Ito ◽  
Adam P. Arkin ◽  
Jon K. Magnuson ◽  
John M. Gladden ◽  
...  

ABSTRACT Microbial production of biofuels and bioproducts offers a sustainable and economic alternative to petroleum-based fuels and chemicals. The basidiomycete yeast Rhodosporidium toruloides is a promising platform organism for generating bioproducts due to its ability to consume a broad spectrum of carbon sources (including those derived from lignocellulosic biomass) and to naturally accumulate high levels of lipids and carotenoids, two biosynthetic pathways that can be leveraged to produce a wide range of bioproducts. While R. toruloides has great potential, it has a more limited set of tools for genetic engineering relative to more advanced yeast platform organisms such as Yarrowia lipolytica and Saccharomyces cerevisiae. Significant advancements in the past few years have bolstered R. toruloides’ engineering capacity. Here we expand this capacity by demonstrating the first use of CRISPR-Cas9-based gene disruption in R. toruloides. Transforming a Cas9 expression cassette harboring nourseothricin resistance and selecting transformants on this antibiotic resulted in strains of R. toruloides exhibiting successful targeted disruption of the native URA3 gene. While editing efficiencies were initially low (0.002%), optimization of the cassette increased efficiencies 364-fold (to 0.6%). Applying these optimized design conditions enabled disruption of another native gene involved in carotenoid biosynthesis, CAR2, with much greater success; editing efficiencies of CAR2 deletion reached roughly 50%. Finally, we demonstrated efficient multiplexed genome editing by disrupting both CAR2 and URA3 in a single transformation. Together, our results provide a framework for applying CRISPR-Cas9 to R. toruloides that will facilitate rapid and high-throughput genome engineering in this industrially relevant organism. IMPORTANCE Microbial biofuel and bioproduct platforms provide access to clean and renewable carbon sources that are more sustainable and environmentally friendly than petroleum-based carbon sources. Furthermore, they can serve as useful conduits for the synthesis of advanced molecules that are difficult to produce through strictly chemical means. R. toruloides has emerged as a promising potential host for converting renewable lignocellulosic material into valuable fuels and chemicals. However, engineering efforts to improve the yeast’s production capabilities have been impeded by a lack of advanced tools for genome engineering. While this is rapidly changing, one key tool remains unexplored in R. toruloides: CRISPR-Cas9. The results outlined here demonstrate for the first time how effective multiplexed CRISPR-Cas9 gene disruption provides a framework for other researchers to utilize this revolutionary genome-editing tool effectively in R. toruloides.


Acta Naturae ◽  
2014 ◽  
Vol 6 (3) ◽  
pp. 19-40 ◽  
Author(s):  
A. A. Nemudryi ◽  
K. R. Valetdinova ◽  
S. P. Medvedev ◽  
S. M. Zakian

Precise studies of plant, animal and human genomes enable remarkable opportunities of obtained data application in biotechnology and medicine. However, knowing nucleotide sequences isnt enough for understanding of particular genomic elements functional relationship and their role in phenotype formation and disease pathogenesis. In post-genomic era methods allowing genomic DNA sequences manipulation, visualization and regulation of gene expression are rapidly evolving. Though, there are few methods, that meet high standards of efficiency, safety and accessibility for a wide range of researchers. In 2011 and 2013 novel methods of genome editing appeared - this are TALEN (Transcription Activator-Like Effector Nucleases) and CRISPR (Clustered Regulatory Interspaced Short Palindromic Repeats)/Cas9 systems. Although TALEN and CRISPR/Cas9 appeared recently, these systems have proved to be effective and reliable tools for genome engineering. Here we generally review application of these systems for genome editing in conventional model objects of current biology, functional genome screening, cell-based human hereditary disease modeling, epigenome studies and visualization of cellular processes. Additionally, we review general strategies for designing TALEN and CRISPR/Cas9 and analyzing their activity. We also discuss some obstacles researcher can face using these genome editing tools.


2019 ◽  
Author(s):  
Ting Li ◽  
An Yan ◽  
Elliot M. Meyerowitz

AbstractCRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) technology has been widely used for genome engineering in a wide range of organisms1, but much of the development of CRISPR-based genome editing has been aimed toward improving its efficiency and accuracy, so as to obtain genetic materials carrying known and stably heritable genome modifications. Precise spatiotemporal control over genome editing technology at cell type resolution is a key challenge for gene function studies. Some tissue-specific CRISPR genome editing methods relying on phenotypic characterization and fluorescent immune-staining techniques have been developed for biomedical research and gene therapy, they function by spatially controlling expression of Cas9 2. Recent work establishes the presence and location of mutational events at a single cell level in Arabidopsis roots and stomata3,4. Here we present an efficient domain-specific CRISPR-Cas9 system combined with a high resolution live-imaging based screening strategy, applied in the shoot apical meristem of Arabidopsis thaliana. Using the system we investigate PIN-FORMED1 (PIN1) protein functions in tissue morphogenesis and PIN1 mechanical stress response in a cell layer-specific fashion. We find that reported failure to generate new primordia in epidermal PIN1 knockout SAMs is due to a reduction in mechanical stress differences in the sub-epidermal layer. The methods described are applicable to spatial-temporal gene manipulation in plants.


2017 ◽  
Author(s):  
Miguel A. Moreno-Mateos ◽  
Juan P. Fernandez ◽  
Romain Rouet ◽  
Maura A. Lane ◽  
Charles E. Vejnar ◽  
...  

Cpf1 is a novel class of CRISPR-Cas DNA endonucleases, with a wide range of activity across different eukaryotic systems. Yet, the underlying determinants of this variability are poorly understood. Here, we demonstrate that LbCpf1, but not AsCpf1, ribonucleoprotein complexes allow efficient mutagenesis in zebrafish and Xenopus. We show that temperature modulates Cpf1 activity by controlling its ability to access genomic DNA. This effect is stronger on AsCpf1, explaining its lower efficiency in ectothermic organisms. We capitalize on this property to show that temporal control of the temperature allows post-translational modulation of Cpf1-mediated genome editing. Finally, we determine that LbCpf1 significantly increases homology-directed repair in zebrafish, improving current approaches for targeted DNA integration in the genome. Together, we provide a molecular understanding of Cpf1 activity in vivo and establish Cpf1 as an efficient and inducible genome engineering tool across ectothermic species.


2019 ◽  
Author(s):  
John C. Rose ◽  
Nicholas A. Popp ◽  
Christopher D. Richardson ◽  
Jason J. Stephany ◽  
Julie Mathieu ◽  
...  

AbstractCRISPR/Cas9 nucleases are powerful genome engineering tools, but unwanted cleavage at off-target and previously edited sites remains a major concern. Numerous strategies to reduce unwanted cleavage have been devised, but all are imperfect. Here, we report off-target sites can be shielded from the active Cas9•single guide RNA (sgRNA) complex through the co-administration of dead-RNAs (dRNAs), truncated guide RNAs that direct Cas9 binding but not cleavage. dRNAs can effectively suppress a wide-range of off-targets with minimal optimization while preserving on-target editing, and they can be multiplexed to suppress several off-targets simultaneously. dRNAs can be combined with high-specificity Cas9 variants, which often do not eliminate all unwanted editing. Moreover, dRNAs can prevent cleavage of homology-directed repair (HDR)-corrected sites, facilitating “scarless” editing by eliminating the need for blocking mutations. Thus, we enable precise genome editing by establishing a novel and flexible approach for suppressing unwanted editing of both off-targets and HDR-corrected sites.


2021 ◽  
Vol 22 (4) ◽  
pp. 2104
Author(s):  
Pedro Robles ◽  
Víctor Quesada

Eleven published articles (4 reviews, 7 research papers) are collected in the Special Issue entitled “Organelle Genetics in Plants.” This selection of papers covers a wide range of topics related to chloroplasts and plant mitochondria research: (i) organellar gene expression (OGE) and, more specifically, chloroplast RNA editing in soybean, mitochondria RNA editing, and intron splicing in soybean during nodulation, as well as the study of the roles of transcriptional and posttranscriptional regulation of OGE in plant adaptation to environmental stress; (ii) analysis of the nuclear integrants of mitochondrial DNA (NUMTs) or plastid DNA (NUPTs); (iii) sequencing and characterization of mitochondrial and chloroplast genomes; (iv) recent advances in plastid genome engineering. Here we summarize the main findings of these works, which represent the latest research on the genetics, genomics, and biotechnology of chloroplasts and mitochondria.


Author(s):  
Gesa Busch ◽  
Erin Ryan ◽  
Marina A. G. von Keyserlingk ◽  
Daniel M. Weary

AbstractPublic opinion can affect the adoption of genome editing technologies. In food production, genome editing can be applied to a wide range of applications, in different species and with different purposes. This study analyzed how the public responds to five different applications of genome editing, varying the species involved and the proposed purpose of the modification. Three of the applications described the introduction of disease resistance within different species (human, plant, animal), and two targeted product quality and quantity in cattle. Online surveys in Canada, the US, Austria, Germany and Italy were carried out with a total sample size of 3698 participants. Using a between-subject design, participants were confronted with one of the five applications and asked to decide whether they considered it right or wrong. Perceived risks, benefits, and the perception of the technology as tampering with nature were surveyed and were complemented with socio-demographics and a measure of the participants’ moral foundations. In all countries, participants evaluated the application of disease resistance in humans as most right to do, followed by disease resistance in plants, and then in animals, and considered changes in product quality and quantity in cattle as least right to do. However, US and Italian participants were generally more positive toward all scenarios, and German and Austrian participants more negative. Cluster analyses identified four groups of participants: ‘strong supporters’ who saw only benefits and little risks, ‘slight supporters’ who perceived risks and valued benefits, ‘neutrals’ who showed no pronounced opinion, and ‘opponents’ who perceived higher risks and lower benefits. This research contributes to understanding public response to applications of genome editing, revealing differences that can help guide decisions related to adoption of these technologies.


aBIOTECH ◽  
2021 ◽  
Author(s):  
Jun Li ◽  
Yan Li ◽  
Ligeng Ma

AbstractCommon wheat (Triticum aestivum L.) is one of the three major food crops in the world; thus, wheat breeding programs are important for world food security. Characterizing the genes that control important agronomic traits and finding new ways to alter them are necessary to improve wheat breeding. Functional genomics and breeding in polyploid wheat has been greatly accelerated by the advent of several powerful tools, especially CRISPR/Cas9 genome editing technology, which allows multiplex genome engineering. Here, we describe the development of CRISPR/Cas9, which has revolutionized the field of genome editing. In addition, we emphasize technological breakthroughs (e.g., base editing and prime editing) based on CRISPR/Cas9. We also summarize recent applications and advances in the functional annotation and breeding of wheat, and we introduce the production of CRISPR-edited DNA-free wheat. Combined with other achievements, CRISPR and CRISPR-based genome editing will speed progress in wheat biology and promote sustainable agriculture.


Author(s):  
Alif Chebbi ◽  
Massimiliano Tazzari ◽  
Cristiana Rizzi ◽  
Franco Hernan Gomez Tovar ◽  
Sara Villa ◽  
...  

Abstract Within the circular economy framework, our study aims to assess the rhamnolipid production from winery and olive oil residues as low-cost carbon sources by nonpathogenic strains. After evaluating various agricultural residues from those two sectors, Burkholderia thailandensis E264 was found to use the raw soluble fraction of nonfermented (white) grape marcs (NF), as the sole carbon and energy source, and simultaneously, reducing the surface tension to around 35 mN/m. Interestingly, this strain showed a rhamnolipid production up to 1070 mg/L (13.37 mg/g of NF), with a higher purity, on those grape marcs, predominately Rha-Rha C14-C14, in MSM medium. On olive oil residues, the rhamnolipid yield of using olive mill pomace (OMP) at 2% (w/v) was around 300 mg/L (15 mg/g of OMP) with a similar CMC of 500 mg/L. To the best of our knowledge, our study indicated for the first time that a nonpathogenic bacterium is able to produce long-chain rhamnolipids in MSM medium supplemented with winery residues, as sole carbon and energy source. Key points • Winery and olive oil residues are used for producing long-chain rhamnolipids (RLs). • Both higher RL yields and purity were obtained on nonfermented grape marcs as substrates. • Long-chain RLs revealed stabilities over a wide range of pH, temperatures, and salinities


Author(s):  
Mamou Diallo ◽  
Servé W. M. Kengen ◽  
Ana M. López-Contreras

AbstractThe Clostridium genus harbors compelling organisms for biotechnological production processes; while acetogenic clostridia can fix C1-compounds to produce acetate and ethanol, solventogenic clostridia can utilize a wide range of carbon sources to produce commercially valuable carboxylic acids, alcohols, and ketones by fermentation. Despite their potential, the conversion by these bacteria of carbohydrates or C1 compounds to alcohols is not cost-effective enough to result in economically viable processes. Engineering solventogenic clostridia by impairing sporulation is one of the investigated approaches to improve solvent productivity. Sporulation is a cell differentiation process triggered in bacteria in response to exposure to environmental stressors. The generated spores are metabolically inactive but resistant to harsh conditions (UV, chemicals, heat, oxygen). In Firmicutes, sporulation has been mainly studied in bacilli and pathogenic clostridia, and our knowledge of sporulation in solvent-producing or acetogenic clostridia is limited. Still, sporulation is an integral part of the cellular physiology of clostridia; thus, understanding the regulation of sporulation and its connection to solvent production may give clues to improve the performance of solventogenic clostridia. This review aims to provide an overview of the triggers, characteristics, and regulatory mechanism of sporulation in solventogenic clostridia. Those are further compared to the current knowledge on sporulation in the industrially relevant acetogenic clostridia. Finally, the potential applications of spores for process improvement are discussed.Key Points• The regulatory network governing sporulation initiation varies in solventogenic clostridia.• Media composition and cell density are the main triggers of sporulation.• Spores can be used to improve the fermentation process.


Sign in / Sign up

Export Citation Format

Share Document