scholarly journals MEK1/2 in Rhabdomyosarcoma

2019 ◽  
Author(s):  
Kenneth A. Crawford ◽  
Megan M. Cleary ◽  
Cora A. Ricker ◽  
Matthew N. Svalina ◽  
John F. Shern ◽  
...  

AbstractAlveolar and embryonal rhabdomyosarcoma (RMS) are soft-tissue cancers that affect children, adolescents, and young adults. Sometimes referred to as muscle cancer, RMS is a cancer of muscle and non-muscle origin that phenocopies incompletely differentiated myoblasts or activated satellite (muscle stem) cells. Interestingly, embryonal RMS (ERMS) has been observed to undergo terminal myogenic differentiation in response to stress induced by chemotherapy and radiation therapy4, 9, 24. Given the propensity of rhabdomyosarcoma to differentiation, in this report we explore the use of differentiation therapy combining MEK inhibitor (MEKi) cobimetinib and chemotherapy as a strategy to halt RMS growth. We evaluated a representative panel of RMS cell lines with cobimetinib and chemotherapy in two dosing schedules that mimic clinical use followed by cell growth evaluation and high content analysis (differentiation) assays. We uncovered that cobimetinib does not have significant additive or synergistic effects on cell differentiation or cell growth with chemotherapy in RMS and can have unanticipated antagonistic effects; specifically, pre-exposure of cobimetinib to cells can decrease the effectiveness of chemotherapy-mediated cell growth inhibition in vitro. Although differentiation-therapy is still a potential viable strategy in RMS, our data do not support MEKi/chemotherapy co-treatment in this context.

2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii62-ii62
Author(s):  
Elisa Izquierdo ◽  
Diana Carvalho ◽  
Alan Mackay ◽  
Sara Temelso ◽  
Jessica K R Boult ◽  
...  

Abstract The survival of children with diffuse intrinsic pontine glioma (DIPG) remains dismal, with new treatments desperately needed. In the era of precision medicine, targeted therapies represent an exciting treatment opportunity, yet resistance can rapidly emerge, playing an important role in treatment failure. In a prospective biopsy-stratified clinical trial, we combined detailed molecular profiling (methylation BeadArray, exome, RNAseq, phospho-proteomics) linked to drug screening in newly-established patient-derived models of DIPG in vitro and in vivo. We identified a high degree of in vitro sensitivity to the MEK inhibitor trametinib (GI50 16-50nM) in samples, which harboured genetic alterations targeting the MAPK pathway, including the non-canonical BRAF_G469V mutation, and those affecting PIK3R1 and NF1. However, treatment of PDX models and of a patient with trametinib at relapse failed to elicit a significant response. We generated trametinib-resistant clones (62-188-fold, GI50 2.4–5.2µM) in the BRAF_G469V model through continuous drug exposure, and identified acquired mutations in MEK1/2 (MEK1_K57N, MEK1_I141S and MEK2_I115N) with sustained pathway up-regulation. These cells showed the hallmarks of mesenchymal transition, and expression signatures overlapping with inherently trametinib-insensitive primary patient-derived cells that predicted an observed sensitivity to dasatinib. Combinations of trametinib with dasatinib and the downstream ERK inhibitor ulixertinib showed highly synergistic effects in vitro. These data highlight the MAPK pathway as a therapeutic target in DIPG, and show the importance of parallel resistance modelling and rational combinatorial treatments likely to be required for meaningful clinical translation.


2013 ◽  
Vol 304 (1) ◽  
pp. C56-C67 ◽  
Author(s):  
James F. Markworth ◽  
David Cameron-Smith

Arachidonic acid (AA) is the metabolic precursor to a diverse range of downstream bioactive lipid mediators. A positive or negative influence of individual eicosanoid species [e.g., prostaglandins (PGs), leukotrienes, and hydroxyeicosatetraenoic acids] has been implicated in skeletal muscle cell growth and development. The collective role of AA-derived metabolites in physiological states of skeletal muscle growth/atrophy remains unclear. The present study aimed to determine the direct effect of free AA supplementation and subsequent eicosanoid biosynthesis on skeletal myocyte growth in vitro . C2C12 (mouse) skeletal myocytes induced to differentiate with supplemental AA exhibited dose-dependent increases in the size, myonuclear content, and protein accretion of developing myotubes, independent of changes in cell density or the rate/extent of myogenic differentiation. Nonselective (indomethacin) or cyclooxygenase 2 (COX-2)-selective (NS-398) nonsteroidal anti-inflammatory drugs blunted basal myogenesis, an effect that was amplified in the presence of supplemental free AA substrate. The stimulatory effects of AA persisted in preexisting myotubes via a COX-2-dependent (NS-389-sensitive) pathway, specifically implying dependency on downstream PG biosynthesis. AA-stimulated growth was associated with markedly increased secretion of PGF2α and PGE2; however, incubation of myocytes with PG-rich conditioned medium failed to mimic the effects of direct AA supplementation. In vitro AA supplementation stimulates PG release and skeletal muscle cell hypertrophy via a COX-2-dependent pathway.


2011 ◽  
Vol 22 (16) ◽  
pp. 2946-2956 ◽  
Author(s):  
Vittoria Cenni ◽  
Alberto Bavelloni ◽  
Francesca Beretti ◽  
Francesca Tagliavini ◽  
Lucia Manzoli ◽  
...  

Activation of Akt-mediated signaling pathways is crucial for survival, differentiation, and regeneration of muscle cells. A proteomic-based search for novel substrates of Akt was therefore undertaken in C2C12 murine muscle cells exploiting protein characterization databases in combination with an anti–phospho-Akt substrate antibody. A Scansite database search predicted Ankrd2 (Ankyrin repeat domain protein 2, also known as ARPP) as a novel substrate of Akt. In vitro and in vivo studies confirmed that Akt phosphorylates Ankrd2 at Ser-99. Moreover, by kinase assay with recombinant Akt1 and Akt2, as well as by single-isoform silencing, we demonstrated that Ankrd2 is a specific substrate of Akt2. Ankrd2 is typically found in skeletal muscle cells, where it mediates the transcriptional response to stress conditions. In an attempt to investigate the physiological implications of Ankrd2 phosphorylation by Akt2, we found that oxidative stress induced by H2O2 triggers this phosphorylation. Moreover, the forced expression of a phosphorylation-defective mutant form of Ankrd2 in C2C12 myoblasts promoted a faster differentiation program, implicating Akt-dependent phosphorylation at Ser-99 in the negative regulation of myogenesis in response to stress conditions.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Ananya Pal ◽  
Jia Yu Leung ◽  
Gareth Chin Khye Ang ◽  
Vinay Kumar Rao ◽  
Luca Pignata ◽  
...  

Wnt signaling is downregulated in embryonal rhabdomyosarcoma (ERMS) and contributes to the block of differentiation. Epigenetic mechanisms leading to its suppression are unknown and could pave the way toward novel therapeutic modalities. We demonstrate that EHMT2 suppresses canonical Wnt signaling by activating expression of the Wnt antagonist DKK1. Inhibition of EHMT2 expression or activity in human ERMS cell lines reduced DKK1 expression and elevated canonical Wnt signaling resulting in myogenic differentiation in vitro and in mouse xenograft models in vivo. Mechanistically, EHMT2 impacted Sp1 and p300 enrichment at the DKK1 promoter. The reduced tumor growth upon EHMT2 deficiency was reversed by recombinant DKK1 or LGK974, which also inhibits Wnt signaling. Consistently, among 13 drugs targeting chromatin modifiers, EHMT2 inhibitors were highly effective in reducing ERMS cell viability. Our study demonstrates that ERMS cells are vulnerable to EHMT2 inhibitors and suggest that targeting the EHMT2-DKK1-β-catenin node holds promise for differentiation therapy.


2011 ◽  
Vol 19 (1) ◽  
pp. 29-38 ◽  
Author(s):  
Yoon Woo Koh ◽  
Manisha H Shah ◽  
Kitty Agarwal ◽  
Samantha K McCarty ◽  
Bon Seok Koo ◽  
...  

Clinical trials using kinase inhibitors have demonstrated transient partial responses and disease control in patients with progressive medullary thyroid cancer (MTC). The goal of this study was to identify potential combinatorial strategies to improve on these results using sorafenib, a multikinase inhibitor with activity in MTC, as a base compound to explore signaling that might predict synergystic interactions. Two human MTC cell lines, TT and MZ-CRC-1, which harbor endogenous C634W or M918T RET mutations, respectively, were exposed to sorafenib, everolimus, and AZD6244 alone and in combination. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrasodium bromide (MTT) and poly (ADP-ribose) polymerase (PARP) cleavage assays were performed to measure cell survival and apoptosis. Western blots were performed to confirm activity of the compounds and to determine possible mechanisms of resistance and predictors of synergy. As a solitary agent, sorafenib was the most active compound on MTT assay. Western blots confirmed that sorafenib, everolimus, and AZD6244 inhibited their anticipated targets. At concentrations below its IC50, sorafenib-treated TT and MZ-CRC-1 cells demonstrated transient inhibition and then re-activation of Erk over 6 h. In concordance, synergistic effects were only identified using sorafenib in combination with the Mek inhibitor AZD6244 (P<0.001 for each cell line). Cells treated with everolimus demonstrated activation of Akt and Ret via TORC2 complex-dependent and TORC2 complex-independent mechanisms respectively. Everolimus was neither additive nor syngergistic in combination with sorafenib or AZD6244. In conclusion, sorafenib combined with a Mek inhibitor demonstrated synergy in MTC cells in vitro. Mechanisms of resistance to everolimus in MTC cells likely involved TORC2-dependent and TORC2-independent pathways.


2018 ◽  
Vol 25 (1) ◽  
pp. 99-109 ◽  
Author(s):  
Koji Tsumagari ◽  
Zakaria Y Abd Elmageed ◽  
Andrew B Sholl ◽  
Erik A Green ◽  
Saboori Sobti ◽  
...  

Although overall survival rate for patients with thyroid cancer (TC) is high, there is an alarming 10-year recurrence rate of up to 30% conferring a ~50% survival among these high-risk patients. The BRAFV600E mutation is estimated to be present in over 50% of papillary thyroid cancer (PTC) cases besides being associated with carcinogenesis and poor prognosis. We assessed the status of NF-κB, Ki-67, cyclin D1 and BRAFV600E in TC tissues and TC cell lines using immunohistochemistry and Western blot analysis. Concurrently, we evaluated the outcomes of combined targeting of the proteasome pathway in addition to selective BRAF inhibitors in cases of PTC. In this study, BRAFV600E-bearing TC cells were treated with BRAFV600E inhibitor, Vemurafenib alone or in combination with the proteasome inhibitor, Bortezomib. The combination of both drugs showed synergistic effects as evidenced by cell growth inhibition (P < 0.05), increased G2-phase cell cycle arrest and induced apoptosis (P < 0.05). In our TC xenograft model, the combination of Vemurafenib and Bortezomib significantly reduced tumor size (P < 0.05) and expression of the markers of cell growth and proliferation, Ki-67 and cyclin D1 (P < 0.001), when compared to monotherapy. Further analysis demonstrated that treatment with Bortezomib sensitized TC cells to Vemurafenib via mitochondrial dysregulation and apoptosis of TC cells, as evidenced by the increase in the expression of p53, Noxa protein, the loss of mitochondrial membrane potential, cytochrome c release and Poly (ADP-ribose) polymerase cleavage. Our results demonstrate a strong clinical potential for the combination of the Bortezomib and the BRAF inhibitor Vemurafenib as an efficient therapeutic approach for the treatment of TC.


Bone ◽  
2008 ◽  
Vol 42 ◽  
pp. S96-S97 ◽  
Author(s):  
Fabrice Journe ◽  
Naima Kheddoumi ◽  
Carole Chaboteaux ◽  
Christos Sotiriou ◽  
Martine Piccart ◽  
...  

2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii414-iii414
Author(s):  
Elisa Izquierdo ◽  
Diana Carvalho ◽  
Alan Mackay ◽  
Sara Temelso ◽  
Jessica K R Boult ◽  
...  

Abstract The survival of children with DIPG remains dismal, with new treatments desperately needed. In the era of precision medicine, targeted therapies represent an exciting treatment opportunity, yet resistance can rapidly emerge, playing an important role in treatment failure. In a prospective biopsy-stratified clinical trial (BIOMEDE), we combined detailed molecular profiling (methylation BeadArray, exome, RNAseq, phospho-proteomics) linked to drug screening in newly-established patient-derived models of DIPG in vitro and in vivo. We identified a high degree of in vitro sensitivity to the MEK inhibitor trametinib (GI50 16-50nM) in samples which harboured genetic alterations targeting the MAPK pathway, including the non-canonical BRAF_G469V mutation, and those affecting PIK3R1. Treatment of PDX models and the patient with trametinib at relapse, however, failed to elicit a significant response. We generated trametinib-resistant clones (62-188-fold, GI50 2.4–5.2µM) in the BRAF_G469V model through continuous drug exposure, and identified acquired mutations in MEK1/2 (MEK1_K57N, MEK1_I141S and MEK2_I115N) with sustained pathway up-regulation. These cells showed the hallmarks of mesenchymal transition, with overexpression of key proteins involved in invasion/migration, such as collagen-family proteins, integrins, MMPs and AHNAK2, amongst others. Resistant clones were conversely sensitive to the upstream receptor tyrosine kinase inhibitor dasatinib (GI50 36-93nM), and combinations of trametinib with dasatinib and the downstream ERK inhibitor ulixertinib showed synergistic effects in vitro. These data highlight the MAPK pathway as a therapeutic target in DIPG, and show the importance of parallel resistance modelling and rational combinatorial treatments likely to be required for meaningful clinical translation.


Blood ◽  
1994 ◽  
Vol 84 (1) ◽  
pp. 125-132 ◽  
Author(s):  
K Hestdal ◽  
FW Ruscetti ◽  
R Chizzonite ◽  
M Ortiz ◽  
JM Gooya ◽  
...  

Abstract Interleukin-1 (IL-1) has been shown to stimulate hematopoietic progenitor cell growth both in vitro and in vivo. Although IL-1 alone lacks the ability to promote hematopoietic progenitor growth in vitro, it is a potent synergistic factor in combination with other colony- stimulating factors (CSFs). Because it was unknown whether type I (p80), type II (p68), or other IL-1-binding proteins mediated the synergistic effects of IL-1 on purified progenitor cells, we used the difference in immunoreactivity between type I and type II IL-1 receptor (IL-1R) to better assess the role of these receptors in hematopoietic progenitor growth. Therefore, the synergistic effects of IL-1 alpha on IL-3-, CSF-1-, and granulocyte macrophage (GM)-CSF-induced progenitor growth, both in CFU-c and single-cell assays, were determined in the presence of monoclonal antibodies (MoAbs) 35F5 and 4E2 that block the binding of IL-1 alpha to type I and type II IL-1R, respectively. The synergistic effect of IL-1 alpha on IL-3 responsive Lin- and Lin(-)-Thy- 1+ progenitors was indirectly mediated and could be inhibited by MoAb 35F5. In contrast, IL-1 alpha directly synergized with CSF-1 and GM-CSF to promote progenitor cell growth. The direct synergistic effect of IL- 1 alpha on CSF-1-induced progenitor growth was observed in all progenitor populations examined (Lin-, Lin-Thy-1+, and Lin-Thy-1-) and was inhibited by MoAb 35F5. However, the direct synergistic effect of IL-1 alpha on GM-CSF-responsive progenitors. Lin- and Lin-Thy-1+, was partially inhibited by MoAb 35F5. In contrast, the MoAb antitype II IL- 1R (MoAb 4E2) could not inhibit the direct synergistic effects of IL-1 alpha on CSF-1- or GM-CSF-induced progenitor growth. Thus, IL-1 alpha directly and indirectly stimulates the growth and differentiation of purified progenitors through the type I IL-1R but not the type II IL-1R.


Sign in / Sign up

Export Citation Format

Share Document