scholarly journals Comparative metatranscriptomics of periodontitis supports a common polymicrobial shift in metabolic function and identifies novel putative disease-associated ncRNAs

2019 ◽  
Author(s):  
Nikhil Ram-Mohan ◽  
Michelle M. Meyer

AbstractPeriodontitis is an inflammatory disease that deteriorates bone supporting teeth afflicting ∼743 million people worldwide. Bacterial communities associated with disease have been classified into red, orange, purple, blue, green, and yellow complexes based on their roles in the periodontal pocket. Previous metagenomic and metatranscriptomics analyses suggest a common shift in metabolic signatures in disease vs. healthy communities with up-regulated processes including pyruvate fermentation, histidine degradation, amino acid metabolism, TonB-dependent receptors. In this work, we examine existing metatranscriptome datasets to identify the commonly differentially expressed transcripts and potential underlying RNA regulatory mechanisms behind the metabolic shifts. Raw RNA-seq reads from three studies (including 49 healthy and 48 periodontitis samples) were assembled into transcripts de novo. Analyses revealed 859 differentially expressed (DE) transcripts, 675 more- and 174 less-expressed. Only ∼20% of the DE transcripts originate from the pathogenic red/orange complexes, and ∼50% originate from organisms unaffiliated with a complex. Comparison of expression profiles revealed variations among disease samples; while specific metabolic processes are commonly up-regulated, the underlying organisms are diverse both within and across disease associated communities. Surveying DE transcripts for known ncRNAs from the Rfam database identified a large number of tRNAs and tmRNAs as well as riboswitches (FMN, glycine, lysine, and SAM) in more prevalent transcripts and the cobalamin riboswitch in both more and less prevalent transcripts. In silico discovery identified many putative ncRNAs in DE transcripts. We report 15 such putative ncRNAs having promising covariation in the predicted secondary structure and interesting genomic context. Seven of these are antisense of ribosomal proteins that are novel and may involve maintaining ribosomal protein stoichiometry during the disease associated metabolic shift. Our findings describe the role of organisms previously unaffiliated with disease and identify the commonality in progression of disease across three metatranscriptomic studies. We find that although the communities are diverse between individuals, the switch in metabolic signatures characteristic of disease is typically achieved through the contributions of several community members. Furthermore, we identify many ncRNAs (both known and putative) which may facilitate the metabolic shifts associated with periodontitis.

Genes ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 172
Author(s):  
Boyin Jia ◽  
Yuan Liu ◽  
Qining Li ◽  
Jiali Zhang ◽  
Chenxia Ge ◽  
...  

Studies of the gene and miRNA expression profiles associated with the postnatal late growth, development, and aging of skeletal muscle are lacking in sika deer. To understand the molecular mechanisms of the growth and development of sika deer skeletal muscle, we used de novo RNA sequencing (RNA-seq) and microRNA sequencing (miRNA-seq) analyses to determine the differentially expressed (DE) unigenes and miRNAs from skeletal muscle tissues at 1, 3, 5, and 10 years in sika deer. A total of 51,716 unigenes, 171 known miRNAs, and 60 novel miRNAs were identified based on four mRNA and small RNA libraries. A total of 2,044 unigenes and 11 miRNAs were differentially expressed between adolescence and juvenile sika deer, 1,946 unigenes and 4 miRNAs were differentially expressed between adult and adolescent sika deer, and 2,209 unigenes and 1 miRNAs were differentially expressed between aged and adult sika deer. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed that DE unigenes and miRNA were mainly related to energy and substance metabolism, processes that are closely associate with the growth, development, and aging of skeletal muscle. We also constructed mRNA–mRNA and miRNA–mRNA interaction networks related to the growth, development, and aging of skeletal muscle. The results show that mRNA (Myh1, Myh2, Myh7, ACTN3, etc.) and miRNAs (miR-133a, miR-133c, miR-192, miR-151-3p, etc.) may play important roles in muscle growth and development, and mRNA (WWP1, DEK, UCP3, FUS, etc.) and miRNAs (miR-17-5p, miR-378b, miR-199a-5p, miR-7, etc.) may have key roles in muscle aging. In this study, we determined the dynamic miRNA and unigenes transcriptome in muscle tissue for the first time in sika deer. The age-dependent miRNAs and unigenes identified will offer insights into the molecular mechanism underlying muscle development, growth, and maintenance and will also provide valuable information for sika deer genetic breeding.


2016 ◽  
Vol 16 (1) ◽  
Author(s):  
Juan Ma ◽  
Rongyan Wang ◽  
Xiuhua Li ◽  
Bo Gao ◽  
Shulong Chen

Abstract The sweet potato weevil, Cylas formicarius (F.) (Coleoptera: Brentidae), is an important pest of sweet potato worldwide. However, there is limited knowledge on the molecular mechanisms underlying growth and differentiation of C. formicarius. The transcriptomes of the eggs, second instar larvae, third instar larvae (L3), pupae, females, and males of C. formicarius were sequenced using Illumina sequencing technology for obtaining global insights into developing transcriptome characteristics and elucidating the relative functional genes. A total of 54,255,544 high-quality reads were produced, trimmed, and de novo assembled into 115,281 contigs. 61,686 unigenes were obtained, with an average length of 1,009 nt. Among these unigenes, 17,348 were annotated into 59 Gene Ontology (GO) terms and 12,660 were assigned to 25 Cluster of Orthologous Groups classes, whereas 24,796 unigenes were mapped to 258 pathways. Differentially expressed unigenes between various developmental stages of C. formicarius were detected. Higher numbers of differentially expressed genes (DEGs) were recorded in the eggs versus L3 and eggs versus male samples (2,141 and 2,058 unigenes, respectively) than the others. Genes preferentially expressed in each stage were also identified. GO and pathway-based enrichment analysis were used to further investigate the functions of the DEGs. In addition, the expression profiles of ten DEGs were validated by quantitative real-time PCR. The transcriptome profiles presented in this study and these DEGs detected by comparative analysis of different developed stages of C. formicarius will facilitate the understanding of the molecular mechanism of various living process and will contribute to further genome-wide research.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Emily K. Fowler ◽  
Thomas Bradley ◽  
Simon Moxon ◽  
Tracey Chapman

Abstract Mating induces extensive physiological, biochemical and behavioural changes in female animals of many taxa. In contrast, the overall phenotypic and transcriptomic consequences of mating for males, hence how they might differ from those of females, are poorly described. Post mating responses in each sex are rapidly initiated, predicting the existence of regulatory mechanisms in addition to transcriptional responses involving de novo gene expression. That post mating responses appear different for each sex also predicts that the genome-wide signatures of mating should show evidence of sex-specific specialisation. In this study, we used high resolution RNA sequencing to provide the first direct comparisons of the transcriptomic responses of male and female Drosophila to mating, and the first comparison of mating-responsive miRNAs in both sexes in any species. As predicted, the results revealed the existence of sex- and body part-specific mRNA and miRNA expression profiles. More genes were differentially expressed in the female head-thorax than the abdomen following mating, whereas the opposite was true in males. Indeed, the transcriptional profile of male head-thorax tissue was largely unaffected by mating, and no differentially expressed genes were detected at the most stringent significance threshold. A subset of ribosomal genes in females were differentially expressed in both body parts, but in opposite directions, consistent with the existence of body part-specific resource allocation switching. Novel, mating-responsive miRNAs in each sex were also identified, and a miRNA-mRNA interactions analysis revealed putative targets among mating-responsive genes. We show that the structure of genome-wide responses by each sex to mating is strongly divergent, and provide new insights into how shared genomes can achieve characteristic distinctiveness.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3641-3641
Author(s):  
Andrea Pellagatti ◽  
Eva Hellström-Lindberg ◽  
Aristoteles Giagounidis ◽  
Janet Perry ◽  
Luca Malcovati ◽  
...  

Abstract The del(5q) is the most commonly reported deletion in de novo MDS and is found in 10–15% of all patients. Our group demonstrated haploinsufficiency for the ribosomal gene RPS14, which is required for the maturation of 40S ribosomal subunits and maps to the commonly deleted region in patients with the 5q- syndrome (Boultwood et al, Br J Haematol2007, 139:578–89). Haploinsufficiency of RPS14 has been shown to be the mechanism underlying the erythroid defect in this disorder (Ebert et al, Nature2008, 451:335–9). We have recently shown that haploinsufficiency of RPS14 in patients with the 5q- syndrome is associated with deregulated expression of ribosomal- and translation-related genes, suggesting that the 5q- syndrome represents a disorder of aberrant ribosome biogenesis (Pellagatti et al, Br J Haematol2008, 142:57–64). The del(5q) in the 5q-syndrome is cytogenetically indistinguishable from the del(5q) found in other MDS and in the vast majority of these patients the CDR of the 5q- syndrome will be deleted (and therefore one allele of RPS14 will be lost). We are investigating the hypothesis that haploinsufficiency of RPS14 and consequent deregulated ribosome biogenesis may also play a role in the pathogenesis of non-5q- syndrome MDS patients with del(5q). Using Affymetrix U133 Plus2.0 arrays, we have studied the expression profiles of a group of 579 ribosomal- and translation-related genes in the CD34+ cells of 21 non-5q- syndrome MDS patients with del(5q) and 95 MDS patients without del(5q). 168 of 579 ribosomal-and translation-related probe sets were found to be significantly differentially expressed between these two groups, with approximately 90% of these showing lower expression levels in patients with del(5q). Hierarchical clustering using this set of 168 genes gave a good separation between patients with and without the del(5q). RPS14 was one of the most significant differentially expressed genes, with lower expression levels in patients with del(5q) confirming its haploinsufficient status in these patients. Other significant differentially expressed genes include the ribosomal protein RPL22L1, and the translation initiation factors EIF4EBP3 and EIF4B. Interestingly, when samples from 16 patients with 5q- syndrome were included in the analysis, hierarchical clustering using significantly differentially expressed ribosomal- and translation-related genes showed that most patients with 5q- syndrome and most patients with del(5q) clustered together. We are currently using polysome profile analysis on bone marrow cells to examine the levels of the 40S ribosomal subunit in patients with del(5q) and without del(5q). Our results support the hypothesis that haploinsufficiency of RPS14 and deregulation of ribosomal- and translation-related genes contribute to disease pathogenesis in MDS patients with del(5q). An exciting possibility is that other MDS with the del(5q) and the 5q- syndrome share a related molecular basis in that they are all disorders of defective ribosomal biogenesis.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Julián Medina ◽  
Lissa Cruz-Saavedra ◽  
Luz Helena Patiño ◽  
Marina Muñoz ◽  
Juan David Ramírez

Abstract Background Leishmaniasis is a neglected tropical disease caused by several species of Leishmania. The resistance phenotype of these parasites depends on the characteristics of each species, which contributes to increased therapeutic failures. Understanding the mechanism used by the parasite to survive under treatment pressure in order to identify potential common and specific therapeutic targets is essential for the control of leishmaniasis. The aim of this study was to investigate the expression profiles and potential shared and specific resistance markers of the main Leishmania species of medical importance [subgenus L. (Leishmania): L. donovani, L. infantum and L. amazonensis; subgenus L. (Viannia): L. panamensis and L. braziliensis)] resistant and sensitive to trivalent stibogluconate (SbIII). Methods We conducted comparative analysis of the transcriptomic profiles (only coding sequences) of lines with experimentally induced resistance to SbIII from biological replicates of five Leishmania species available in the databases of four articles based on ortholog attribution. Simultaneously, we carried out functional analysis of ontology and reconstruction of metabolic pathways of the resulting differentially expressed genes (DEGs). Results Resistant lines for each species had differential responses in metabolic processes, compound binding, and membrane components concerning their sensitive counterpart. One hundred and thirty-nine metabolic pathways were found, with the three main pathways comprising cysteine and methionine metabolism, glycolysis, and the ribosome. Differentially expressed orthologous genes assigned to species-specific responses predominated, with 899 self-genes. No differentially expressed genes were found in common among the five species. Two common upregulated orthologous genes were found among four species (L. donovani, L. braziliensis, L. amazonensis, and L. panamensis) related to an RNA-binding protein and the NAD(P)H cytochrome-B5-oxidoreductase complex, associated with transcriptional control and de novo synthesis of linoleic acid, critical mechanisms in resistance to antimonials. Conclusion Herein, we identified potential species-specific genes related to resistance to SbIII. Therefore, we suggest that future studies consider a treatment scheme that is species-specific. Despite the limitations of our study, this is the first approach toward unraveling the pan-genus genetic mechanisms of resistance in leishmaniasis. Graphical Abstract


Life ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 300
Author(s):  
Leyland Fraser ◽  
Łukasz Paukszto ◽  
Anna Mańkowska ◽  
Paweł Brym ◽  
Przemysław Gilun ◽  
...  

Long non-coding RNAs (lncRNAs) are suggested to play an important role in the sperm biological processes. We performed de novo transcriptome assembly to characterize lncRNAs in spermatozoa, and to investigate the role of the potential target genes of the differentially expressed lncRNAs (DElncRNAs) in sperm freezability. We detected approximately 4007 DElncRNAs, which were differentially expressed in spermatozoa from boars classified as having good and poor semen freezability (GSF and PSF, respectively). Most of the DElncRNAs were upregulated in boars of the PSF group and appeared to significantly affect the sperm’s response to the cryopreservation conditions. Furthermore, we predicted that the potential target genes were regulated by DElncRNAs in cis or trans. It was found that DElncRNAs of both freezability groups had potential cis- and trans-regulatory effects on different protein-coding genes, such as COX7A2L, TXNDC8 and SOX-7. Gene Ontology (GO) enrichment revealed that the DElncRNA target genes are associated with numerous biological processes, including signal transduction, response to stress, cell death (apoptosis), motility and embryo development. Significant differences in the de novo assembled transcriptome expression profiles of the DElncRNAs between the freezability groups were confirmed by quantitative real-time PCR analysis. This study reveals the potential effects of protein-coding genes of DElncRNAs on sperm functions, which could contribute to further research on their relevance in semen freezability.


2020 ◽  
Vol 21 (11) ◽  
pp. 3853
Author(s):  
Gea Guerriero ◽  
Emilie Piasecki ◽  
Roberto Berni ◽  
Xuan Xu ◽  
Sylvain Legay ◽  
...  

Callose is an important biopolymer of β-1,3-linked glucose units involved in different phases of plant development, reproduction and response to external stimuli. It is synthesized by glycosyltransferases (GTs) known as callose synthases (CalS) belonging to family 48 in the Carbohydrate-Active enZymes (CAZymes) database. These GTs are anchored to the plasma membrane via transmembrane domains. Several genes encoding CalS have been characterized in higher plants with 12 reported in the model organism Arabidopsis thaliana. Recently, the de novo transcriptome of a fibre-producing clone of stinging nettle (Urtica dioica L.) was published and here it is mined for CalS genes with the aim of identifying members differentially expressed in the core and cortical tissues of the stem. The goal is to understand whether specific CalS genes are associated with distinct developmental stages of the stem internodes (elongation, thickening). Nine genes, eight of which encoding full-length CalS, are identified in stinging nettle. The phylogenetic analysis with CalS proteins from other fibre crops, namely textile hemp and flax, reveals grouping into 6 clades. The expression profiles in nettle tissues (roots, leaves, stem internodes sampled at different heights) reveal differences that are most noteworthy in roots vs. leaves. Two CalS are differentially expressed in the internodes sampled at the top and middle of the stem. Implications of their role in nettle stem tissue development are discussed.


2020 ◽  
Author(s):  
Hui-Ming Li ◽  
Bi-Ze Yang ◽  
Xiu-Juan Zhang ◽  
Hai-Ying Jiang ◽  
Lin-Miao Li ◽  
...  

AbstractThe expression of hair features is an evolutionary adaptation resulting from interactions between many organisms and their environment. Elucidation of the mechanisms that underlie the expression of such traits is a topic in evolutionary biology research. Therefore, we assessed the de novo transcriptome of Atelerix albiventris at three developmental stages and compared gene expression profiles between abdomen hair and dorsal spine tissues. We identified 328,576 unigenes in our transcriptome, among which 3,598 were differentially expressed between hair- and spine-type tissues. Dorsal and abdomen skin tissues 5 days after birth were compared and the resulting differentially expressed genes were mainly enriched in keratin filament, epithelium cell differentiation, and epidermis development based on GO enrichment analysis, and tight junction, p53, and cell cycle signaling pathways based on KEGG enrichment analysis. Expression variations of MBP8, SFN, Wnt10, KRT1, and KRT2 may be the main factors regulating hair and spine differentiation for the hedgehog. Strikingly, DEGs in hair-type tissues were also significantly enriched in immune-related terms and pathways with hair-type tissues exhibiting more upregulated immune genes than spine-type tissues. Thus, we propose that spine development was an adaptation that provided protection against injuries or stress and reduced hedgehog vulnerability to infection.


Agronomy ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1888
Author(s):  
Sandeep Kumar Kushwaha ◽  
Ramesh R. Vetukuri ◽  
Firuz Odilbekov ◽  
Nidhi Pareek ◽  
Tina Henriksson ◽  
...  

The evolution of pathogens in the changing climate raises new challenges for wheat production. Yellow rust is one of the major wheat diseases worldwide, leading to an increased use of fungicides to prevent significant yield losses. The enhancement of the resistance potential of wheat cultivars is a necessary and environmentally friendly solution for sustainable wheat production. In this study, we aimed to identify the differentially expressed genes induced upon yellow rust infection in the field. Reference and de novo based transcriptome analysis was performed among the resistant and susceptible lines of a bi-parental population to study the global transcriptome changes in contrasting wheat genotypes. Based on the analysis, the de novo transcriptome analysis approach was found to be more supportive for field studies. Expression profiles, gene ontology, KEGG pathway analysis and enrichment studies indicated the relation between differentially expressed genes of wheat and yellow rust infection. The h0igh expression of genes related to non-race specific resistance along with pathogen-specific resistance might be a reason for the better resistance ability of a resistant wheat genotype in the field. The targeted metagenomic analysis of wheat samples revealed that Puccinia striiformis tritici was the most dominant pathogen along with other pathogens on the collected leaf material and validating the disease scoring carried out in the field and transcriptomics analyses.


2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Shugen Wei ◽  
Lingyun Wan ◽  
Lili He ◽  
Ying Wei ◽  
Hairong Long ◽  
...  

Loranthus (Taxillus chinensis) is a facultative, hemiparasite and stem parasitic plant that attacks other plants for living. Transcriptome sequencing and bioinformatics analysis were applied in this study to identify the gene expression profiles of fresh seeds (CK), baby (FB), and adult haustoria tissues (FD). We assembled 160,571 loranthus genes, of which 64,926, 35,417, and 47,249 were aligned to NR, GO, and KEGG pathway databases, respectively. We identified 14,295, 15,921, and 16,402 genes in CK, FB, and FD, respectively. We next identified 5,480 differentially expressed genes (DEGs) in the process, of which 258, 174, 81, and 94 were encoding ribosomal proteins (RP), transcription factors (TF), ubiquitin, and disease resistance proteins, respectively. Some DEGs were identified to be upregulated along with the haustoria development (e.g., 68 RP and 26 ubiquitin genes). Notably, 36 RP DEGs peak at FB; 10 ER, 5 WRKY, 6 bHLH, and 4 MYB TF genes upregulated only in FD. Further, we identified 4 out of 32 microRNA genes dysregulated in the loranthus haustoria development. This is the first haustoria transcriptome of loranthus, and our findings will improve our understanding of the molecular mechanism of haustoria.


Sign in / Sign up

Export Citation Format

Share Document