In situobservation of morphological changes of γ′ precipitates in a pre-deformed single-crystal Ni-base superalloy

2011 ◽  
Vol 44 (5) ◽  
pp. 935-944 ◽  
Author(s):  
Pavel Strunz ◽  
Gerhard Schumacher ◽  
Hellmuth Klingelhöffer ◽  
Albrecht Wiedenmann ◽  
Jan Šaroun ◽  
...  

Exposure of a superalloy to an external load results in anisotropic coarsening of the γ′ precipitates, so-called rafting. It was reported in the past that γ′ rafting can also occur as a result of purely thermal treatment, without the simultaneous presence of an external load, if the specimen has been pre-deformed at relatively low temperature. The evolution of γ′ morphology in pre-deformed specimens of SCA425 Ni-base superalloy was examined in the present study. Unlike in the previous experiments, the compressive stress was used for pre-straining.In situsmall-angle neutron scattering (SANS) was employed, which enabled the determination of the morphology directly at high temperature. Both for strong and for weak pre-straining, rounding of the originally cuboidal precipitates towards an ellipsoidal shape on heating was observed. Weak pre-straining (0.1, 0.5%) does not cause rafting on subsequent heating. On the other hand, the detailed evaluation of SANS data provides some indication of rafting during the subsequent heating after severe compressive pre-straining (2%). The experiment indicates the role of dislocation rearrangement at the matrix/precipitate interface during pre-straining.

2022 ◽  
Vol 8 ◽  
Author(s):  
James A. Garnett ◽  
Joseph Atherton

Historically proteins that form highly polymeric and filamentous assemblies have been notoriously difficult to study using high resolution structural techniques. This has been due to several factors that include structural heterogeneity, their large molecular mass, and available yields. However, over the past decade we are now seeing a major shift towards atomic resolution insight and the study of more complex heterogenous samples and in situ/ex vivo examination of multi-subunit complexes. Although supported by developments in solid state nuclear magnetic resonance spectroscopy (ssNMR) and computational approaches, this has primarily been due to advances in cryogenic electron microscopy (cryo-EM). The study of eukaryotic microtubules and bacterial pili are good examples, and in this review, we will give an overview of the technical innovations that have enabled this transition and highlight the advancements that have been made for these two systems. Looking to the future we will also describe systems that remain difficult to study and where further technical breakthroughs are required.


Development ◽  
1961 ◽  
Vol 9 (4) ◽  
pp. 650-660
Author(s):  
Cyril V. Finnegan

In order better to evaluate results obtained in this laboratory concerning the responses of differentiating postneurula somite tissue to other mesoderm tissue placed in its immediate vicinity (Finnegan, unpublished), it was necessary to examine somite differentiation in situ. A qualitative examination of somite interphase nuclei of tail-bud and later stages was performed to note their morphological changes since it was assumed, as suggested by Briggs & King (1955), that such changes indicate cellular differentiation and, conversely, that absence of such changes indicates that the cells are not actively differentiating. Because of the possible role of the intercellular matrix in histogenesis (see Grobstein, 1954, 1959; and Edds, 1958) a study was made of the development in the somite of that portion of the intercellular matrix which is demonstrable histochemically with the periodic acid-Schirf (PAS) technique. The visual clarity of the results has been materially aided by the fluorescent Schiff reagent of Culling & Vassar (1961) which makes possible a fluorescent Feulgen and a fluorescent PAS reaction.


1989 ◽  
Vol 170 ◽  
Author(s):  
Juan C. Figueroa ◽  
Linda S. Schadler ◽  
Campbell Laird

AbstractThe effect of fiber surface treatments on the relationship between the tensile strength of a filament and the shear strength of its interphase is one of the central issues facing composite materials technologists today. We demonstrate here that analysis of fragmentation phenomena in monofilament composites can simultaneously yield information about these two parameters. Characterization of shear stress transfer zones in non-critical fragments has led us to the determination of interphase strength.A phenomenological treatment that highlights the role of the matrix in the fragmentation process is presented here. This analysis considers issues such as the strain energy exchange between a failing fiber and the matrix, as well as interphase relaxation due to the viscoelastic nature of the matrix. Our observations of the fragmentation phenomena in AU4/polycarbonate monofilament composites indicate that the fiber/matrix interaction in this system is governed by micromechanical locking.


Separations ◽  
2021 ◽  
Vol 8 (9) ◽  
pp. 149
Author(s):  
Sara Bocanegra-Rodríguez ◽  
Carmen Molins-Legua ◽  
Pilar Campíns-Falcó

We propose a portable sensor, obtained by embedding luminol into the tetraethylorthosilicate/trietoxymethylsilane (TEOS/MTEOS) composite, for the quantitative determination of organic amino nitrogen and ammonium in water with the goal of achieving low levels of concentration. The method is based on the reaction between amino nitrogen compounds and hypochlorite to produce chloramino derivatives. Then, the remaining hypochlorite reacts with luminol sensor by producing a luminescence signal, which was measured by using a portable luminometer, being inversely proportional to nitrogen concentration. The liberation of the luminol from sensor is higher than 90% and the sensor is stable for at least a week at room temperature. This portable method was successfully validated and applied to the analysis of several real waters: fountain, river transition, lagoon, and seawater with recovery values between 92% and 112%, which indicated that the matrix effect was absent. The achieved limit of detection was around 10 µg·L−1, expressed as N. This sensor allows in situ monitoring owing to its simplicity, rapidity, and portability.


1985 ◽  
Vol 50 (7) ◽  
pp. 1553-1564 ◽  
Author(s):  
Ján Gajdoš ◽  
Tomáš Bleha

Potential energy has been calculated for molecular aggregates formed of all-trans extended hexanes with various arrangements of the central molecule surrounded by the first coordination sphere. Differences in stabilities of the aggregates are connected with biaxial character of asymmetry of the interaction energy of extended paraffins. When investigating the multiparameter interaction potential of the partially ordered systems of hydrocarbon chains, the first step consisted in determination of the energy barriers to longitudinal shifts of the central molecules at various distances of the surrounding molecules. Destabilization of the aggregates with displaced molecules is due to both the mismatch of the central molecule to the matrix and effective shortening of that part of the central molecule which is "immersed" in the aggregate. The energetics of the model aggregates is made use of in elucidating the role of translation of paraffins and cognate molecules in rotational phase, in mesophases, and at a forced shortening of the chains connected with conformational transition.


Biomolecules ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 642 ◽  
Author(s):  
Donald A. Tomalia ◽  
Linda S. Nixon ◽  
David M. Hedstrand

This article reviews progress over the past three decades related to the role of dendrimer-based, branch cell symmetry in the development of advanced drug delivery systems, aqueous based compatibilizers/solubilizers/excipients and nano-metal cluster catalysts. Historically, it begins with early unreported work by the Tomalia Group (i.e., The Dow Chemical Co.) revealing that all known dendrimer family types may be divided into two major symmetry categories; namely: Category I: symmetrical branch cell dendrimers (e.g., Tomalia, Vögtle, Newkome-type dendrimers) possessing interior hollowness/porosity and Category II: asymmetrical branch cell dendrimers (e.g., Denkewalter-type) possessing no interior void space. These two branch cell symmetry features were shown to be pivotal in directing internal packing modes; thereby, differentiating key dendrimer properties such as densities, refractive indices and interior porosities. Furthermore, this discovery provided an explanation for unimolecular micelle encapsulation (UME) behavior observed exclusively for Category I, but not for Category II. This account surveys early experiments confirming the inextricable influence of dendrimer branch cell symmetry on interior packing properties, first examples of Category (I) based UME behavior, nuclear magnetic resonance (NMR) protocols for systematic encapsulation characterization, application of these principles to the solubilization of active approved drugs, engineering dendrimer critical nanoscale design parameters (CNDPs) for optimized properties and concluding with high optimism for the anticipated role of dendrimer-based solubilization principles in emerging new life science, drug delivery and nanomedical applications.


Author(s):  
Sarah M R Wille ◽  
Simon Elliott

Abstract (Forensic) toxicology has faced many challenges, both analytically and interpretatively, especially in relation to an increase in potential drugs of interest. Analytical toxicology and its application to medicine and forensic science have progressed rapidly within the past centuries. Technological innovations have enabled detection of more substances with increasing sensitivity in a variety of matrices. Our understanding of the effects (both intended and unintended) have also increased along with determination and degree of toxicity. However, it is clear there is even more to understand and consider. The analytical focus has been on typical matrices such as blood and urine but other matrices could further increase our understanding, especially in postmortem (PM) situations. Within this context, the role of PM changes and potential redistribution of drugs requires further research and identification of markers of its occurrence and extent. Whilst instrumentation has improved, in the future, nanotechnology may play a role in selective and sensitive analysis as well as bioassays. Toxicologists often only have an advisory impact on pre-analytical and pre-interpretative considerations. The collection of appropriate samples at the right time in an appropriate way as well as obtaining sufficient circumstance background is paramount in ensuring an effective analytical strategy to provide useful results that can be interpreted within context. Nevertheless, key interpretative considerations such as pharmacogenomics and drug–drug interactions as well as determination of tolerance remain and in the future, analytical confirmation of an individual’s metabolic profile may support a personalized medicine and judicial approach. This should be supported by the compilation and appropriate application of drug data pursuant to the situation. Specifically, in PM circumstances, data pertaining to where a drug was not/may have been/was contributory will be beneficial with associated pathological considerations. This article describes the challenges faced within toxicology and discusses progress to a future where they are being addressed.


Author(s):  
Edward G. Fey

In the past few years, considerable advances have been made regarding the structure and function of the nuclear matrix. In the first half of this presentation, the field of nuclear matrix research will be summarized. Emphasis will be placed on those studies where molecular interactions are demonstrated in situ utilizing high resolution light and/or electron microscopy. Studies demonstrating the role of the nuclear matrix in DNA synthesis and replication, RNA transcription and processing, and the binding of matrix attachment regions to specific nuclear matrix proteins will be summarized.


2020 ◽  
Vol 2 (3) ◽  
pp. 118-123
Author(s):  
OLGA YUTSCHENKO ◽  
◽  
YULIA GAMALEEVA

The purpose of research. The article deals with the general tendencies of the formation process of a historical figure as a national hero in media space. Winston Churchill’s cinematography imagery is analyzed and the features of interpretation of his role in history are defined. The purpose of research is determination of specificities in the formation process of imagery’s historical figure as national hero in cinematography. Results. Nowadays the way of representing historical space through the media sphere is one of the most popular for auditory and at the same time, it represents the new vision of the historical past. The tendency of connecting historical past and historical figure together drifts the angle from the whole epoch to «historical faces». That's the reason why historical epochs are translated through imagery of figures from the past. In this case historical space is gradually tapered to the person’s story and becomes more individual.


Beverages ◽  
2019 ◽  
Vol 5 (1) ◽  
pp. 16 ◽  
Author(s):  
Valery Ripari

This review describes the technical and functional role of exopolysaccharides (EPSs) in cereal-based, yogurt-like beverages. Many microorganisms produce EPSs as a strategy for growing, adhering to solid surfaces, and surviving under adverse conditions. In several food and beverages, EPSs play technical and functional roles. Therefore, EPSs can be isolated, purified, and added to the product, or appropriate bacteria can be employed as starter cultures to produce the EPSs in situ within the matrix. The exploitation of in situ production of EPSs is of particular interest to manufacturers of cereal-base beverages aiming to mimic dairy products. In this review, traditional and innovative or experimental cereal-based beverages, and in particular, yogurt-like beverages are described with a particular focus in lactic acid bacteria (LAB’s) EPS production. The aim of this review is to present an overview of the current knowledge of exopolysaccharides produced by lactic acid bacteria, and their presence in cereal-based, yogurt-like beverages.


Sign in / Sign up

Export Citation Format

Share Document