Corrosion inhibition of AA3003 aluminum alloy by self-assembled layers of myristic acid

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
María V. Puc-Oxté ◽  
Máximo A. Pech-Canul

Purpose This paper aims to prepare highly hydrophobic films on aluminum AA3003 using myristic acid (MA) and evaluate its corrosion protection efficiency in a low-chloride solution. Design/methodology/approach The aluminum surface was initially treated with boiling water to develop a porous nanostructure, and then surface modification was carried out in ethanolic solutions with different concentrations of MA. The surface morphology, wetting behavior and film composition were first characterized, and then, the corrosion behavior was evaluated with electrochemical techniques. Findings The best hydrophobicity and corrosion resistance were obtained with 50 mM of MA. For such concentration, a water contact angle of 140° and protective efficiency of 96% were achieved. A multilayer structure was revealed by scanning electron microscope and X-ray photoelectron spectroscopy. Originality/value The results of this work shed light on the anticorrosion performance of fatty acid self-assembled multilayers on the surface of Al–Mn alloys.


2018 ◽  
Vol 47 (4) ◽  
pp. 350-359 ◽  
Author(s):  
Nivin M. Ahmed ◽  
Mostafa G. Mohamed ◽  
Reham H. Tammam ◽  
Mohamed R. Mabrouk

Purpose This study aims to apply novel anticorrosive pigments containing silica fume-phosphates (Si-Ph), which were prepared using core-shell technique by covering 80-90 per cent silica fume (core) with 10-20 per cent phosphates (shell) previously, to play dual functions simultaneously as anticorrosive pigments in coating formulations and as an anticorrosive admixture in concrete even if it is not present in the concrete itself. Two comparisons were held out to show the results of coatings on rebars containing core-shell pigments in concrete, and concrete admixtured with silica fume can perform a dual function as anticorrosive pigment and concrete admixture. The evaluation of corrosion protection efficiency of coatings containing core-shell pigments and those containing phosphates was performed. Design/methodology/approach Simple chemical techniques were used to prepare core-shell pigments, and their characterization was carried out in a previous work. These pigments were incorporated in solvent-based paint formulations based on epoxy resin. Different electrochemical techniques such as open-circuit potential and electrochemical impedance spectroscopy were used to evaluate the anticorrosive efficiency of the new pigments. Findings The electrochemical measurements showed that concrete containing coated rebars with core-shell pigments exhibited almost similar results to that of concrete admixtured with silica fume. Also, the anticorrosive performance of coatings containing Si-Ph pigments offered protection efficiency almost similar to that of phosphates, proving that these new pigments can perform both roles as anticorrosive pigment and concrete admixture. Originality/value Although the new Si-Ph pigments contain more than 80 per cent waste material, its performance can be compared to original phosphate pigments in the reinforced concrete.



2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Dan Wang ◽  
Qingdong Zhong ◽  
Jian Yang ◽  
Shujian Zhang

Purpose This paper aims to search the optimum content of Ni on the microstructure, phase and electrochemical behavior of high-strength low alloy (HSLA) steel in the 3.5 wt.% NaCl solution. Design/methodology/approach The microstructure and corrosion resistance of Ni-containing HSLA steel in the simulated marine environment was studied by optical microscopy, scanning electron microscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and electrochemical techniques. Findings The sample containing 3.55 wt.% of nickel exhibited a finer grain size of 10 μm and a lower icorr of 2.169 µA cm−2. The XRD patterns showed that the Fe-Cr-Ni solid solution, FeC and Cr3C2 were observed in samples when Ni was added. Besides, the 3.55 wt.% of nickel addition enhanced the charge transfer resistance of the low alloy steel which suggested the sample possessed excellent inhibition of electrochemical reaction and corrosion resistance. The XPS spectrum suggested that nickel was beneficial to improve the corrosion resistance of steel by forming protective oxides, and the ratio of Fe2+/Fe3+ in protective oxides was increased. Practical implications Finding the comprehensive performance of HSLA steel which can be applied to unmanned surface vehicles in marine operations. Originality/value This study has a guiding significance for optimizing the composition of HSLA steel in a Cl- containing environment.



2020 ◽  
Vol 10 (8) ◽  
pp. 2656 ◽  
Author(s):  
Amani Khaskhoussi ◽  
Luigi Calabrese ◽  
Edoardo Proverbio

In this work, a two-stage methodology to design super-hydrophobic surfaces was proposed. The first step consists of creating a rough nano/micro-structure and the second step consists of reducing the surface energy using octadecyltrimethoxysilane. The surface roughening was realized by three different short-term pretreatments: (i) Boiling water, (ii) HNO3/HCl etching, or (iii) HF/HCl etching. Then, the surface energy was reduced by dip-coating in diluted solution of octadecyltrimethoxysilane to allow the formation of self-assembled silane monolayers on a 6082-T6 aluminum alloy surface. Super-hydrophobic aluminum surfaces were investigated by SEM-EDS, FTIR, profilometry, and contact and sliding angles measurements. The resulting surface morphologies by the three approaches were structured by a dual hierarchical nano/micro-roughness. The surface wettability varied with the applied roughening pretreatment. In particular, an extremely high water contact angle (around 180°) and low sliding angle (0°) were evidenced for the HF/HCl-etched silanized surface. The results of electrochemical tests demonstrate a remarkable enhancement of the aluminum alloy corrosion resistance through the proposed superhydrophobic surface modifications. Thus, the obtained results evidenced that the anti-wetting behavior of the aluminum surface can be optimized by coupling an appropriate roughening pretreatment with a self-assembled silane monolayer deposition (to reduce surface energy) for anticorrosion application.



2012 ◽  
Vol 9 (1) ◽  
pp. 435-442 ◽  
Author(s):  
Yabin Wang ◽  
Yanni Li ◽  
Fang Wang

The protective performances of coating formed by organo-silane with a linear alkyl chain for promoting aluminum alloy corrosion protection were evaluated by electrochemical techniques. The coatings were self-assembled in the hydrolyzed hydroalcoholic bath ofn-octyltriethoxysilane (OS) and cured at hot air oven by different time. The coatings prepared by the less self-assembled number and shorter cured time, were always porous and scarcely protective. On the contrary, those built by the more self-assembled number and the longer cured time had higher coverage on aluminum surface and favorable corrosion resistant property. The best results were obtained whenn-octyltri-ethoxysilane (OS) was hydrolyzed 25 h, self-assembling of OS was conducted for five times and the multi-layers were cured at 120 for 1∼2 hours. In this case, the thicker, high cross-linked and more scarcely defective layer was formed on aluminum alloy surface.



2017 ◽  
Vol 13 ◽  
pp. 648-658 ◽  
Author(s):  
Loïc Pantaine ◽  
Vincent Humblot ◽  
Vincent Coeffard ◽  
Anne Vallée

Aniline-terminated self-assembled monolayers (SAMs) on gold surfaces have successfully reacted with ArSO2NHOSO2Ar (Ar = 4-MeC6H4 or 4-FC6H4) resulting in monolayers with sulfamide moieties and different end groups. Moreover, the sulfamide groups on the SAMs can be hydrolyzed showing the partial regeneration of the aniline surface. SAMs were characterized by water contact angle (WCA) measurements, Fourier-transform infrared reflection absorption spectroscopy (IRRAS) and X-ray photoelectron spectroscopy (XPS).



2006 ◽  
Vol 6 (11) ◽  
pp. 3507-3511
Author(s):  
Sangjin Park ◽  
Young Shik Chi ◽  
Insung S. Choi ◽  
Jiehyun Seong ◽  
Sangyong Jon

Self-assembled polymeric monolayers (PMs) on Si/SiO2 wafers were prepared in water from a series of random copolymers of poly(ethylene glycol) methyl ether methacrylate (PEGMA) and 3-(trimethoxysilyl)propyl methacrylate (TMSMA), denoted as poly(TMSMA-r-PEGMA). Four polymers of poly(TMSMA-r-PEGMA) were synthesized by free radical polymerization with a systematic variation of co-monomer feed ratios. Regardless of PEG grafting density in the copolymers, all PMs formed approximately 1 nm-thick film as measured by ellipsometry. However, the PMs with a higher grafting density of PEG resulted in more hydrophilic surfaces in terms of water contact angle. The protein resistance of the PMs was evaluated using bovine serum albumin (BSA) as a model protein. Analyses by ellipsometry, atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS) showed that the PMs of the copolymers markedly reduced the nonspecific adsorption of proteins compared to the unmodified Si/SiO2 wafers. The study also revealed that the PMs prepared from the copolymers with a higher PEG grafting density were more effective in resisting the nonspecific protein adsorption.



2016 ◽  
Vol 88 (2) ◽  
pp. 182-190 ◽  
Author(s):  
Yuanlin Ren ◽  
Jieyun Zhao ◽  
Xiuli Wang

The polypropylene melt-blown nonwoven membrane (PPM) is widely used in healthcare; however, the highly hydrophobic nature of the PPM readily adsorbs proteins and polysaccharides, which are conducive to bacteria being retained in the network, resulting in biofouling. Therefore, to improve the hydrophilic and antimicrobial properties of PPM, acrylic acid (AA) was first graft-polymerized on PPM (PPM- g-AA) by ultraviolet (UV)-induced photo-grafting polymerization. Chitosan (CS) was then covalently grafted onto PPM- g-AA to obtain the bigrafted PPM (PPM- g-AA- g-CS). Finally, silver (Ag) nanoparticles were immobilized onto PPM- g-AA- g-CS to create the hydrophilic and antibacterial PPM. The surface chemical composition and morphology of the samples were characterized by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy. The hydrophilic and antimicrobial properties of the modified PPM were assessed using static water contact angle measurements, wetting time, and bacteria colony-counting assays. The results show that PPM- g-AA- g-CS with immobilized Ag nanoparticles has excellent antibacterial and hydrophilic properties.



2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Pingping Hou ◽  
Zhaohui Zhan ◽  
Shuai Qi ◽  
Yingjie Ma ◽  
Bo Li ◽  
...  

Purpose The purpose of this study is to prepare a chemically stable superhydrophobic coating with remarkable mechanical properties and concrete protective properties. Design/methodology/approach One synthetic step was adopted to prepare superhydrophobic coating. The process and product were analyzed and confirmed by fourier transform-infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), water contact angle (WCA), transmission electron microscopy (TEM), scanning electron microscope (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The mechanical properties were confirmed by tensile test. The concrete protective properties were confirmed by solution immersion test and rapid chloride migration coefficient test. Findings MSiO2 nanoparticles (NPs) were chosen to enhance the hydrophobicity of fluorosilicone coatings. With a 4:1 mass ratio of fluorosilicone resin and MSiO2 NPs, the coatings show superhydrophobicity with a WCA of 156° and a SA of 3.1°. In addition, the tensile mechanical property was improved, and the chloride ion diffusion coefficient was decreased significantly after the addition of MSiO2 NPs. Practical implications This new fluorosilicone coating hybrid by MSiO2 NPs could be applied as a concrete protective layer with properties of self-cleaning, antifouling, etc. Originality/value Introduction of MSiO2 NPs hybrid to prepare fluorosilicone coating with superhydrophobicity on concrete surface has not been systematically studied previously.



2018 ◽  
Vol 71 (11) ◽  
pp. 855
Author(s):  
Lei Wang ◽  
Lei Chen ◽  
Zhanxiong Li

In this study, three novel side-chain fluoroalkyl oligoethers with different molecular weights were synthesised via a ring-opening reaction of 2,2,3,3,4,4,5,5,5-nonafluoropentyloxirane. The fluorooligoethers were then silanized and characterised by FT-IR,1H, and 19F NMR spectroscopies. These silanlized fluorooligoethers were used to fabricate hydrophobic coatings on silicon substrates, which were pre-treated with O2 plasma, by the method of liquid phase deposition. The chemical compositions and structures of the film surfaces were analysed by X-ray photoelectron spectroscopy and the results showed that silanized fluorooligoethers formed self-assembled films on the silicon wafer. The surface wettability of the coatings was measured by water contact angles. It is noted that the annealing process can improve the hydrophobicity with the highest water contact angle being 115.2 ± 1° and hexadecane contact angle being 67.2 ± 1°. The surface morphologies and roughness of the self-assembled films were measured by atomic force microscopy (AFM), as a result, the surface was found to be rougher with the increment of the molecular weight of the fluorooligoethers.



2014 ◽  
Vol 61 (5) ◽  
pp. 343-352 ◽  
Author(s):  
Martin C. Fatah ◽  
Mokhtar C. Ismail ◽  
Bambang Ari-Wahjoedi

Purpose – The purpose of this work was to study the corrosion behaviour of X52 steel in the presence of sulphite. Design/methodology/approach – The study was conducted in abiotic solutions containing species typical of sulphate-reducing bacteria (SRB) metabolism. Electrochemical techniques, i.e. linear polarization resistance (LPR), potentiodynamic and electrochemical impedance spectroscopy (EIS), were used to observe the corrosion kinetics and mechanism of X52 steel in the solution containing sulphite. Field emission scanning electron microscope (FESEM) and X-ray photoelectron spectroscopy (XPS) were used to characterize the corrosion products. Findings – LPR and EIS results showed that the addition of sulphite ions to the abiotic solutions increased the rate of X52 steel corrosion. The increase of corrosion rate was due to the increase in the cathodic reaction in the presence of sulphite. It was also observed that sulphite thinned the protective FeS film and caused corrosive species to adsorb on the surface, resulting in an increase in corrosion rate. Originality/value – This paper discusses the effects of sulphite on the corrosion behaviour of X52 steel in abiotic solution containing species typically produced by the SRB-type metabolic process. Irrespective of the presence of sulphide, sulphite is produced by SRB during their metabolic process. However, as far as is known, no published papers are available that discuss the effect of the presence of sulphite as one of the metabolic products of SRB.



Sign in / Sign up

Export Citation Format

Share Document