Vacuum oven drying of mussels: mathematical modeling, drying characteristics and kinetics study

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Osman İsmail ◽  
Özlem Gökçe Kocabay

PurposeThe aim of this work was to study the effect of the different temperatures on drying kinetics and quality parameters of vacuum oven-dried mediterranean or black mussel (Mytilus galloprovincialis) specimens.Design/methodology/approachDrying process was performed at 50, 60 and 70 °C and a vacuum drying pressure of 0.1 kPa. The proximate composition analysis was done. Drying rates of the mussels were computed. Mathematical modeling was carried out. Effective moisture diffusivity, activation energy and total energy consumption were calculated. Color measurement was conducted.FindingsDrying took place entirely in the falling rate period. The obtained results indicated that the drying air temperature has a remarkable influence on the moisture content and drying rate. Drying resulted in a significant increasing of protein and fat content. The Deff values ranged from 1.44 × 10−9–3.23 × 10−9 m2/s, with the activation energy 4.47 kW kg−1. The Alibas model is the most proper model to define the drying curves. This method provided high energy efficiency and quality in dried products.Research limitations/implicationsFresh mussels grown in Eceabat location were used as the study sample. In the drying process, 50, 60, 70 °C temperatures and 0.1 kPa pressure was used. These are the limitations of the research.Originality/valueThis work is the first to report the influence of vacuum oven drying on the color changes and drying kinetics of black mussels.

Author(s):  
Narjes Malekjani ◽  
Zahra Emam-Djomeh ◽  
Seyed Hassan Hashemabadi ◽  
Gholam Reza Askari

AbstractThe effects of microwave-convective drying as an efficient drying method, on drying kinetics of hazelnuts were studied. Drying experiments were conducted at three temperature (40, 50 and 60°C) and microwave power (0, 450 and 900 W) levels. The moisture ratio and the temperature of the hazelnuts were recorded during the drying. The results showed that microwave power had a more dominant effect than drying air temperature. Mathematical modeling was performed in order to predict the moisture changes during drying process. It was concluded that two term and Midilli et al. models were the best models to predict the drying kinetics of hazelnut in different conditions. The effective moisture diffusivities varied from 3.80327×10‒8to 1.71233×10‒6m2/s and had an increasing polynomial relationship with temperature and microwave power. The activation energy was also between 15.61675 and 41.0053 kJ/mol with a second-order relationship with microwave power.


2011 ◽  
Vol 422 ◽  
pp. 501-504
Author(s):  
Jiang Quan Ma ◽  
Qing Ling Lu ◽  
Jun Hao Xia ◽  
Xiao Bin Gan ◽  
Chao Yao

Palygorskite had large applications in chemical, environmental protection, medicine processes and so on. However, since the mineral limitations of natural palygorskite, both improving its quality and meeting the need of industry, palygorskite usually needs to be activated before using it. The influences of activation during the drying process were studied, as well as the drying kinetics of the non-activated of palygorskite. The results showed that the drying rate of palygorskite increased at first, and then came to a constant value, and kept that value for some time. After that, drying rate decreased with time going. Compared with drying curves of the non activated palygorskite, the samples made some changes after activation. The drying process of non activated palygorskite could be described as the equation of MR=exp(-ktn). The diffusion activation energy (E) of non activated palygorskite was equal to 17.14kJ•mol-1, former factors of Arrhenius was equal to 4.19×10-5 m2•s-1.


2013 ◽  
Vol 706-708 ◽  
pp. 456-459
Author(s):  
Shi Long Wang ◽  
Li Na Wang

Palygorskite had large applications in chemical, environmental protection, medicine processes and so on. However, since the mineral limitations of natural palygorskite, both improving its quality and meeting the need of industry, palygorskite usually needs to be activated before using it. The influences of activation during the drying process were studied, as well as the drying kinetics of the non-activated of palygorskite. The results showed that the drying rate of palygorskite increased at first,and then came to a constant value, and kept that value for some time. After that, drying rate decreased with time going. Compared with drying curves of the non activated palygorskite, the samples made some changes after activation. The drying process of non activated palygorskite could be described as the equation of MR=exp(-ktn).The diffusion activation energy (E) of non activated palygorskite was equal to 17.14kJ.mol-1, former factors of Arrhenius was equal to 4.19×10-5 m2.s-1.


2017 ◽  
Vol 83 (15) ◽  
Author(s):  
Kimiho Omae ◽  
Yasuko Yoneda ◽  
Yuto Fukuyama ◽  
Takashi Yoshida ◽  
Yoshihiko Sako

ABSTRACT Calderihabitans maritimus KKC1 is a thermophilic, hydrogenogenic carboxydotroph isolated from a submerged marine caldera. Here, we describe the de novo sequencing and feature analysis of the C. maritimus KKC1 genome. Genome-based phylogenetic analysis confirmed that C. maritimus KKC1 was most closely related to the genus Moorella, which includes well-studied acetogenic members. Comparative genomic analysis revealed that, like Moorella, C. maritimus KKC1 retained both the CO2-reducing Wood-Ljungdahl pathway and energy-converting hydrogenase-based module activated by reduced ferredoxin, but it lacked the HydABC and NfnAB electron-bifurcating enzymes and pyruvate:ferredoxin oxidoreductase required for ferredoxin reduction for acetogenic growth. Furthermore, C. maritimus KKC1 harbored six genes encoding CooS, a catalytic subunit of the anaerobic CO dehydrogenase that can reduce ferredoxin via CO oxidation, whereas Moorella possessed only two CooS genes. Our analysis revealed that three cooS genes formed known gene clusters in other microorganisms, i.e., cooS-acetyl coenzyme A (acetyl-CoA) synthase (which contained a frameshift mutation), cooS–energy-converting hydrogenase, and cooF-cooS-FAD-NAD oxidoreductase, while the other three had novel genomic contexts. Sequence composition analysis indicated that these cooS genes likely evolved from a common ancestor. Collectively, these data suggest that C. maritimus KKC1 may be highly dependent on CO as a low-potential electron donor to directly reduce ferredoxin and may be more suited to carboxydotrophic growth compared to the acetogenic growth observed in Moorella, which show adaptation at a thermodynamic limit. IMPORTANCE Calderihabitans maritimus KKC1 and members of the genus Moorella are phylogenetically related but physiologically distinct. The former is a hydrogenogenic carboxydotroph that can grow on carbon monoxide (CO) with H2 production, whereas the latter include acetogenic bacteria that grow on H2 plus CO2 with acetate production. Both species may require reduced ferredoxin as an actual “energy equivalent,” but ferredoxin is a low-potential electron carrier and requires a high-energy substrate as an electron donor for reduction. Comparative genomic analysis revealed that C. maritimus KKC1 lacked specific electron-bifurcating enzymes and possessed six CO dehydrogenases, unlike Moorella species. This suggests that C. maritimus KKC1 may be more dependent on CO, a strong electron donor that can directly reduce ferredoxin via CO dehydrogenase, and may exhibit a survival strategy different from that of acetogenic Moorella, which solves the energetic barrier associated with endergonic reduction of ferredoxin with hydrogen.


Author(s):  
Carolina M. Sánchez-Sáenz ◽  
Vânia R. G. Nascimento ◽  
João D. Biagi ◽  
Rafael A. de Oliveira

ABSTRACT Mathematical modeling enables dimensioning of dryers, optimization of drying conditions and the evaluation of process performance. The aim of this research was to describe the behavior of orange bagasse drying using Page's and Fick's second law models, and to assess activation energy (using Arrhenius equation), moisture content, water activity and bulk density of product at the end of the process. The drying experimental assays were performed in 2011 with convective air temperature between 36 and 64 ºC and infrared radiation application time in the range from 23 to 277 s in accordance with the experimental central composite rotatable design. Analysis of variance and F-test were applied to results. At the end of the drying process, moisture content was about 0.09 to 0.87 db and water activity was between 0.25 and 0.87. Bulk density did not vary under studied conditions. Empirical Page's model demonstrated better representation of experimental data than the Fick's model for spheres. Activation energy values were about 18.491; 14.975 and 11.421 kJ mol-1 for infrared application times of 60; 150 e 244 s, respectively.


Foods ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2837
Author(s):  
Kamal Alahmad ◽  
Wenshui Xia ◽  
Qixing Jiang ◽  
Yanshun Xu

Different experiment analyses were performed to evaluate the influence of two drying techniques (oven drying and microwave drying) on the fillets of bighead carp fish (Hypophthalmichthys nobilis). The processed and fresh samples were subjected to the chemical analysis of (amino acids, minerals, volatile compounds, fatty acids, and vitamins) as well as scanning electron microscopy, thermal analysis, and color measurement, in order to identify nutritional components that can be additives or supplementary in food industries. The drying techniques increased the protein content significantly. Amino acids were identified, and the level of essential amino acid (EAA) was higher under the microwave treatment compared with the oven drying process. The Ca+2 and K+1 were presented in high values, followed by Na+1 and Mg+2. In addition, the drying techniques showed and released more volatile compounds in the processed samples compared with the unprocessed samples. Under the drying process, polyunsaturated fatty acids were increased in the processed fillets, whereas the level of saturated and monounsaturated fatty acids reduced. Thermal degradation occurred from 100 to 150 °C. However, the processed samples were subjected to an intensive endothermic response, but remained stable until 100 °C. Therefore, the microwave technique showed some enhancements in the nutritional value and has the potential to be applied as an effective preservation method of bighead carp fish. Furthermore, dried fillets could be an alternative source of bighead carp fish for the food industry.


Horticulturae ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 40
Author(s):  
Vincenzo Alfeo ◽  
Diego Planeta ◽  
Salvatore Velotto ◽  
Rosa Palmeri ◽  
Aldo Todaro

Solar drying and convective oven drying of cherry tomatoes (Solanum lycopersicum) were compared. The changes in the chemical parameters of tomatoes and principal drying parameters were recorded during the drying process. Drying curves were fitted to several mathematical models, and the effects of air temperature during drying were evaluated by multiple regression analyses, comparing to previously reported models. Models for drying conditions indicated a final water content of 30% (semidry products) and 15% (dry products) was achieved, comparing sun-drying and convective oven drying at three different temperatures. After 26–28 h of sun drying, the tomato tissue had reached a moisture content of 15%. However, less drying time, about 10–11 h, was needed when starting with an initial moisture content of 92%. The tomato tissue had high ORAC and polyphenol content values after convective oven drying at 60 °C. The dried tomato samples had a satisfactory taste, color and antioxidant values.


2018 ◽  
Vol 24 (5) ◽  
pp. 813-820 ◽  
Author(s):  
Junjie Wu ◽  
Xiang Xu ◽  
Zhihao Zhao ◽  
Minjie Wang ◽  
Jie Zhang

Purpose The purpose of this paper is to investigate the effect of selective laser sintering (SLS) method on morphology and performance of polyamide 12. Design/methodology/approach Crystallization behavior is critical to the properties of semi-crystalline polymers. The crystallization condition of SLS process is much different from others. The morphology of polyamide 12 produced by SLS technology was investigated using scanning electron microscopy, polarized light microscopy, differential scanning calorimetry, X-ray diffraction and wide-angle X-ray diffraction. Findings Too low fill laser power brought about bad fusion of powders, while too high energy input resulted in bad performance due to chain scission of macromolecules. There were three types of crystal in the raw powder material, denoted as overgrowth crystal, ring-banded spherulite and normal spherulite. Originality/value In this work, SLS samples with different sintering parameters, as well as compression molding sample for the purpose of comparison, were made to study the morphology and crystal structure of sintered PA12 in detail.


1998 ◽  
Vol 88 (6) ◽  
pp. 1058-1065 ◽  
Author(s):  
Kenneth R. Wagner ◽  
Guohua Xi ◽  
Ya Hua ◽  
Marla Kleinholz ◽  
Gabrielle M. de Courten-Myers ◽  
...  

Object. The authors previously demonstrated, in a large-animal intracerebral hemorrhage (ICH) model, that markedly edematous (“translucent”) white matter regions (> 10% increases in water contents) containing high levels of clotderived plasma proteins rapidly develop adjacent to hematomas. The goal of the present study was to determine the concentrations of high-energy phosphate, carbohydrate substrate, and lactate in these and other perihematomal white and gray matter regions during the early hours following experimental ICH. Methods. The authors infused autologous blood (1.7 ml) into frontal lobe white matter in a physiologically controlled model in pigs (weighing approximately 7 kg each) and froze their brains in situ at 1, 3, 5, or 8 hours postinfusion. Adenosine triphosphate (ATP), phosphocreatine (PCr), glycogen, glucose, lactate, and water contents were then measured in white and gray matter located ipsi- and contralateral to the hematomas, and metabolite concentrations in edematous brain regions were corrected for dilution. In markedly edematous white matter, glycogen and glucose concentrations increased two- to fivefold compared with control during 8 hours postinfusion. Similarly, PCr levels increased several-fold by 5 hours, whereas, except for a moderate decrease at 1 hour, ATP remained unchanged. Lactate was markedly increased (approximately 20 µmol/g) at all times. In gyral gray matter overlying the hematoma, water contents and glycogen levels were significantly increased at 5 and 8 hours, whereas lactate levels were increased two- to fourfold at all times. Conclusions. These results, which demonstrate normal to increased high-energy phosphate and carbohydrate substrate concentrations in edematous perihematomal regions during the early hours following ICH, are qualitatively similar to findings in other brain injury models in which a reduction in metabolic rate develops. Because an energy deficit is not present, lactate accumulation in edematous white matter is not caused by stimulated anaerobic glycolysis. Instead, because glutamate concentrations in the blood entering the brain's extracellular space during ICH are several-fold higher than normal levels, the authors speculate, on the basis of work reported by Pellerin and Magistretti, that glutamate uptake by astrocytes leads to enhanced aerobic glycolysis and lactate is generated at a rate that exceeds utilization.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Younes Bahammou ◽  
Mounir Kouhila ◽  
Haytem Moussaoui ◽  
Hamza Lamsyehe ◽  
Zakaria Tagnamas ◽  
...  

PurposeThis work aims to study the hydrothermal behavior of mortar cement toward certain environmental factors (ambient air temperature and air velocity) based on its drying kinetics data. The objective is to provide a better understanding and controlling the stability of mortar structures, which integrate the sorption phenomenon, drying process, air pressure and intrinsic characteristics. This leads to predict the comportment of mortar structures in relation with main environmental factors and minimize the risk of cracking mortar structures at an early age.Design/methodology/approachThermokinetic study was carried out in natural and forced convection solar drying at three temperatures 20, 30 and 40°C and three air velocities (1, 3 and 5 m.s-1). The empirical and semiempirical models tested successfully describe the drying kinetics of mortar. These models simulate the drying process of water absorbed by capillarity, which is the most common humidity transfer mechanism in building materials and contain parameters with physical significance, which integrate the effect of several environmental factors and intrinsic characteristics of mortar structures.FindingsThe models simulate the drying process of water absorbed by capillarity, which is the most common humidity transfer mechanism in building materials and contain parameters with physical significance, which integrate the effect of several environmental factors and intrinsic characteristics of mortar structures. The average activation energy obtained expressed the temperature effect on the mortar diffusivity. The drying constant and the diffusion coefficient can be used to predict the influence of these environmental factors on the drying behavior of various building materials and therefore on their durability.Originality/valueEvaluation of the effect of several environmental factors and intrinsic characteristics of mortar structures on their durability.


Sign in / Sign up

Export Citation Format

Share Document