scholarly journals Mechanical behaviour and interface evaluation of hybrid MIM/PBF stainless steel components

2020 ◽  
Vol 26 (10) ◽  
pp. 1809-1825
Author(s):  
Aldi Mehmeti ◽  
Pavel Penchev ◽  
Donal Lynch ◽  
Denis Vincent ◽  
Nathalie Maillol ◽  
...  

Purpose The paper reports an investigation into the mechanical behaviour of hybrid components produced by combining the capabilities of metal injection moulding (MIM) with the laser-based powder bed fusion (PBF) process to produce small series of hybrid components. The research investigates systematically the mechanical properties and the performance of the MIM/PBF interfaces in such hybrid components. Design/methodology/approach The MIM process is employed to fabricate relatively lower cost preforms in higher quantities, whereas the PBF technology is deployed to build on them sections that can be personalised, customised or functionalised to meet specific technical requirements. Findings The results are discussed, and conclusions are made about the mechanical performance of such hybrid components produced in batches and also about the production efficiency of the investigated hybrid manufacturing (HM) route. The obtained results show that the proposed HM route can produce hybrid MIM/PBF components with consistent mechanical properties and interface performance which comply with the American Society for Testing and Materials (ASTM) standards. Originality/value The manufacturing of hybrid components, especially by combining the capabilities of additive manufacturing processes with cost-effective complementary technologies, is designed to be exploited by industry because they can offer flexibility and cost advantages in producing small series of customisable products. The findings of this research will contribute to further develop the state of the art in regards to the manufacturing and optimisation of hybrid components.

2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Madhuri Chandrashekhar Deshpande ◽  
Rajesh Chaudhari ◽  
Ramesh Narayanan ◽  
Harishwar Kale

Purpose This study aims to develop indium-based solders for cryogenic applications. Design/methodology/approach This paper aims to investigate mechanical properties of indium-based solder formulations at room temperature (RT, 27 °C) as well as at cryogenic temperature (CT, −196 °C) and subsequently to find out their suitability for cryogenic applications. After developing these alloys, mechanical properties such as tensile and impact strength were measured as per American Society for Testing and Materials standards at RT and at CT. Charpy impact test results were used to find out ductile to brittle transition temperature (DBTT). These properties were also evaluated after thermal cycling (TC) to find out effect of thermal stress. Scanning electron microscope analysis was performed to understand fracture mechanism. Results indicate that amongst the solder alloys that have been studied in this work, In-34Bi solder alloy has the best all-round mechanical properties at RT, CT and after TC. Findings It can be concluded from the results of this work that In-34Bi solder alloy has best all-round mechanical properties at RT, CT and after TC and therefore is the most appropriate solder alloy amongst the alloys that have been studied in this work for cryogenic applications Originality/value DBTT of indium-based solder alloys has not been found out in the work done so far in this category. DBTT is necessary to decide safe working temperature range of the alloy. Also the effect of TC, which is one of the major reasons of failure, was not studied so far. These parameters are studied in this work.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Bing Zhang ◽  
Raiyan Seede ◽  
Austin Whitt ◽  
David Shoukr ◽  
Xueqin Huang ◽  
...  

Purpose There is recent emphasis on designing new materials and alloys specifically for metal additive manufacturing (AM) processes, in contrast to AM of existing alloys that were developed for other traditional manufacturing methods involving considerably different physics. Process optimization to determine processing recipes for newly developed materials is expensive and time-consuming. The purpose of the current work is to use a systematic printability assessment framework developed by the co-authors to determine windows of processing parameters to print defect-free parts from a binary nickel-niobium alloy (NiNb5) using laser powder bed fusion (LPBF) metal AM. Design/methodology/approach The printability assessment framework integrates analytical thermal modeling, uncertainty quantification and experimental characterization to determine processing windows for NiNb5 in an accelerated fashion. Test coupons and mechanical test samples were fabricated on a ProX 200 commercial LPBF system. A series of density, microstructure and mechanical property characterization was conducted to validate the proposed framework. Findings Near fully-dense parts with more than 99% density were successfully printed using the proposed framework. Furthermore, the mechanical properties of as-printed parts showed low variability, good tensile strength of up to 662 MPa and tensile ductility 51% higher than what has been reported in the literature. Originality/value Although many literature studies investigate process optimization for metal AM, there is a lack of a systematic printability assessment framework to determine manufacturing process parameters for newly designed AM materials in an accelerated fashion. Moreover, the majority of existing process optimization approaches involve either time- and cost-intensive experimental campaigns or require the use of proprietary computational materials codes. Through the use of a readily accessible analytical thermal model coupled with statistical calibration and uncertainty quantification techniques, the proposed framework achieves both efficiency and accessibility to the user. Furthermore, this study demonstrates that following this framework results in printed parts with low degrees of variability in their mechanical properties.


2018 ◽  
Vol 24 (9) ◽  
pp. 1469-1478 ◽  
Author(s):  
Yinmin (Morris) Wang ◽  
Chandrika Kamath ◽  
Thomas Voisin ◽  
Zan Li

Purpose Density optimization is the first critical step in building additively manufactured parts with high-quality and good mechanical properties. The authors developed an approach that combines simulations and experiments to identify processing parameters for high-density Ti-6Al-4V using the laser powder-bed-fusion technique. A processing diagram based on the normalized energy density concept is constructed, illustrating an optimized processing window for high- or low-density samples. Excellent mechanical properties are obtained for Ti-6Al-4V samples built from the optimized window. Design/methodology/approach The authors use simple, but approximate, simulations and selective experiments to design parameters for a limited set of single track experiments. The resulting melt-pool characteristics are then used to identify processing parameters for high-density pillars. A processing diagram is built and excellent mechanical properties are achieved in samples built from this window. Findings The authors find that the laser linear input energy has a much stronger effect on the melt-pool depth than the melt-pool width. A processing diagram based on normalized energy density and normalized hatch spacing was constructed, qualitatively indicating that high-density samples are produced in a region when 1 < E* < 2. The onset of void formation and low-density samples occur as E* moves beyond a value of 2. The as-built SLM Ti-6Al-4V shows excellent mechanical performance. Originality/value A combined approach of computer simulations and selected experiments is applied to optimize the density of Ti-6Al-4V, via laser powder-bed-fusion (L-PBF) technique. A series of high-density samples are achieved. Some special issues are identified for L-PBF processes of Ti-6Al-4V, including the powder particle sticking and part swelling issues. A processing diagram is constructed for Ti-6Al-4V, based on the normalized energy density and normalized hatch spacing concept. The diagram illustrates windows with high- and low-density samples. Good mechanical properties are achieved during tensile tests of near fully dense Ti-6Al-4V samples. These good properties are attributed to the success of density optimization processes.


2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Xintian Liu ◽  
Que Wu ◽  
Shengchao Su ◽  
Yansong Wang

PurposeThe properties of materials under impact load are introduced in terms of metal, nonmetallic materials and composite materials. And the application of impact load research in biological fields is also mentioned. The current hot research topics and achievements in this field are summarized. In addition, some problems in theoretical modeling and testing of the mechanical properties of materials are discussed.Design/methodology/approachThe situation of materials under impact load is of great significance to show the mechanical performance. The performance of various materials under impact load is different, and there are many research methods. It is affected by some kinds of factors, such as the temperature, the gap and the speed of load.FindingsThe research on mechanical properties of materials under impact load has the characteristics as fellow. It is difficult to build the theoretical model, verify by experiment and analyze the data accumulation.Originality/valueThis review provides a reference for further study of material properties.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
José M. Zea Pérez ◽  
Jorge Corona-Castuera ◽  
Carlos Poblano-Salas ◽  
John Henao ◽  
Arturo Hernández Hernández

Purpose The purpose of this paper is to study the effects of printing strategies and processing parameters on wall thickness, microhardness and compression strength of Inconel 718 superalloy thin-walled honeycomb lattice structures manufactured by laser powder bed fusion (L-PBF). Design/methodology/approach Two printing contour strategies were applied for producing thin-walled honeycomb lattice structures in which the laser power, contour path, scanning speed and beam offset were systematically modified. The specimens were analyzed by optical microscopy for dimensional accuracy. Vickers hardness and quasi-static uniaxial compression tests were performed on the specimens with the least difference between the design wall thickness and the as built one to evaluate their mechanical properties and compare them with the counterparts obtained by using standard print strategies. Findings The contour printing strategies and process parameters have a significant influence on reducing the fabrication time of thin-walled honeycomb lattice structures (up to 50%) and can lead to improve the manufacturability and dimensional accuracy. Also, an increase in the young modulus up to 0.8 times and improvement in the energy absorption up to 48% with respect to those produced by following a standard strategy was observed. Originality/value This study showed that printing contour strategies can be used for faster fabrication of thin-walled lattice honeycomb structures with similar mechanical properties than those obtained by using a default printing strategy.


2019 ◽  
Vol 26 (2) ◽  
pp. 259-266 ◽  
Author(s):  
Maximilian Hugo Kunkel ◽  
Andreas Gebhardt ◽  
Khumbulani Mpofu ◽  
Stephan Kallweit

Purpose This paper aims to establish a standardized, quick, reliable and cost-efficient method of quality control (QC) in metal powder bed fusion (PBFM) based on process monitoring data. Design/methodology/approach Based on destructive testing results that emerged from a statistical investigation on powder bed fusion process exceeding reproducibility of mechanical properties, it was investigated if the generated monitoring data from a concept laser machine allows reliable deductions on resulting mechanical properties of the manufactured specimens. Findings The application of machine learning on generated melt pool images, under-recognition of destructive testing results, enables enhanced pattern recognition. The generated computational model successfully classified 9,280 unseen layer images by 98.9 per cent accuracy. This finding offers an automated approach to quality control within PBFM. Originality/value To the authors knowledge, it is the first time that machine learning has been applied for the purpose of QC in additive manufacturing. The ability of deep convolutional neural networks to recognize patterns, which are imperceptible to the human eye, shows high potential to facilitate activities of QC and to minimize QC-related costs and throughput times. The achieved processing speed for image analyses also points a way for future developments of self-corrective PBFM systems.


2019 ◽  
Vol 25 (4) ◽  
pp. 744-751 ◽  
Author(s):  
Xiaomiao Niu ◽  
Hongyao Shen ◽  
Guanhua Xu ◽  
Linchu Zhang ◽  
Jianzhong Fu ◽  
...  

Purpose Mg-Al powder mixture was used to manufacture Mg-Al alloy by laser powder bed fusion (LPBF) process. This study aims to investigate the influence of initial Al content and processing parameters on the formability, microstructure and consequent mechanical properties of the laser powder bed fused (LPBFed) component. Design/methodology/approach In this study, Al powder with different weight ratio ranged from 3 to 9 per cent was mixed with pure Mg powder, and the powder mixture was processed using different LPBF parameters. Microstructure and compressive properties of the LPBFed components were examined. Findings It was found that the presence of Al significantly modified the microstructure and improved the mechanical properties of the LPBFed components. Higher volume of ß-Al12Mg17 precipitates was produced at higher initial Al content and higher laser energy density. For this reason, the a-Mg was significantly refined and the compressive strength was improved. The highest yield compressive strength achieved was 279 MPa when using Mg-9 Wt. % Al mixture. Originality/value This work demonstrates that LPBF of Mg-Al powder mixture was a viable way to additively manufacture Mg-Al alloy. Both Al content and processing parameters can be modified to control the microstructure and mechanical properties of the LPBFed components.


2019 ◽  
Vol 25 (10) ◽  
pp. 1575-1584 ◽  
Author(s):  
Achim Kampker ◽  
Johannes Triebs ◽  
Sebastian Kawollek ◽  
Peter Ayvaz ◽  
Tom Beyer

Purpose This study aims to investigate the influence of additive manufactured polymer injection moulds on the mechanical properties of moulded parts. Therefore, polymer moulds are used to inject standard specimens to compare material properties to specimens produced using a conventional aluminium tool. Design/methodology/approach PolyJet technology is used to three-dimensional (3D)-print a mould insert in Digital ABS and selective laser sintering (SLS) technology is used to 3D-print a mould insert in polyamide (PA) 3200 GF. A conventionally aluminium milled tool serves as reference. Standard specimens are produced to compare resulting mechanical properties, shrinkage behaviour and morphology. Findings The determined material characteristics of the manufactured prototypes from the additive manufactured tools show differences in terms of mechanical behaviour to those from the aluminium reference tool. The most significant differences are an up to 25 per cent lower tensile elongation and an up to 63 per cent lower elongation at break resulting in an embrittlement of the specimens produced. These differences seem to be mainly due to the different morphological structure caused by the lower thermal conductivity and greater surface roughness of the polymer tools. Research limitations/implications The determined differences in mechanical behaviour can partly be assigned to differences in surface roughness and morphological structure of the resulting parts. The exact extend of either cause, however, cannot be clearly determined. Originality/value This study provides a comparison between the part material properties from conventionally milled aluminium tools and polymer inserts manufactured via additive tooling.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Riaz Muhammad ◽  
Umair Ali

Purpose This paper aims to analyze the effect of cerium addition on the microstructure and the mechanical properties of Tin-Silver-Copper (SAC) alloy. The mechanical properties and refined microstructure of a solder joint are vital for the reliability and performance of electronics. SAC305 alloys are potential choices to use as lead-free solders because of their good properties as compared to the conventional Tin-Lead solder alloys. However, the presence of bulk intermetallic compounds (IMCs) in the microstructure of SAC305 alloys affects their overall performance. Therefore, addition of cerium restrains the growth of IMCs and refines the microstructure, hence improving the mechanical performance. Design/methodology/approach SAC305 alloy is doped with various composition of xCerium (x = 0.15, 0.35, 0.55, 0.75, 0.95) % by weight. Pure elements in powdered form were melted in the presence of argon with periodic stirring to ensure a uniform melted alloy. The molten alloy is then poured into a pre-heated die to obtain a tensile specimen. The yield strength and universal tensile strength were determined using a fixed strain rate of 10 mm per minute or 0.1667 mm s^(−1). The IMCs are identified using X-ray diffraction, whereas the elemental phase composition and microstructure evolution are, respectively, examined by using electron dispersive spectroscopy and scanning electron microscopy. Findings Improvement in the microstructure and mechanical properties is observed with 0.15% of cerium additions. The tensile test also showed that SAC305-0.15% cerium exhibits more stress-bearing capacity than other compositions. The 0.75% cerium doped alloy indicated some improvement because of a decrease in fracture dislocation regions, but microstructure refinement and the arrangement of IMCs are not those of 0.15% Ce. Different phases of Cu_6 Sn_5, Ag_3 Sn and CeSn_3 and ß-Sn are identified. Therefore, the addition of cerium in lower concentrations and presence of Ce-Sn IMCs improved the grain boundary structure and resulted refinement in the microstructure of the alloy, as well as an enhancement in the mechanical properties. Originality/value Characterization of microstructure and evaluation of mechanical properties are carried out to investigate the different composition of SAC305-xCerium alloys. Finally, an optimized cerium composition is selected for solder joint in electronics.


2018 ◽  
Vol 24 (4) ◽  
pp. 764-773 ◽  
Author(s):  
Zhixiong Zhang ◽  
Chunbing Wu ◽  
Tang Li ◽  
Keshan Liang ◽  
Yujun Cao

Purpose Selective laser melting (SLM) enables the fabrication of lightweight and complex metallic structures. Support structures are required in the SLM process to successfully produce parts. Supports are typically lattice structures, which cost much time and material to manufacture. Besides, the manufacturability of these supports is undesirable, which may impact the quality of parts or even fail the process. The purpose of this paper is to investigate the efficiency and mechanical properties of advanced internal branch support structures for SLM. Design/methodology/approach The theoretic weight of a branch support and a lattice support of the same plane were calculated and compared. A group of standard candidates of branch support structures were manufactured by SLM. The weight and scanning time of specimens with different design parameters were compared. Then, these samples were tested using an MTS Insight 30 compression testing machine to study the influence of different support parameters on mechanical strength of the support structures. Findings The results show that branch type supports can save material, energy and time used needed for their construction. The yield strength of the branch increases with the branch diameter and inclined branch angle in general. Furthermore, branch supports have a higher strength than traditional lattice supports. Originality/value To the best of the authors’ knowledge, this is the first work investigating production efficiency and mechanical properties of branch support structures for SLM. The findings in this work are valuable for development of advanced optimal designs of efficient support structures for SLM process.


Sign in / Sign up

Export Citation Format

Share Document