Direct polymer additive tooling – effect of additive manufactured polymer tools on part material properties for injection moulding

2019 ◽  
Vol 25 (10) ◽  
pp. 1575-1584 ◽  
Author(s):  
Achim Kampker ◽  
Johannes Triebs ◽  
Sebastian Kawollek ◽  
Peter Ayvaz ◽  
Tom Beyer

Purpose This study aims to investigate the influence of additive manufactured polymer injection moulds on the mechanical properties of moulded parts. Therefore, polymer moulds are used to inject standard specimens to compare material properties to specimens produced using a conventional aluminium tool. Design/methodology/approach PolyJet technology is used to three-dimensional (3D)-print a mould insert in Digital ABS and selective laser sintering (SLS) technology is used to 3D-print a mould insert in polyamide (PA) 3200 GF. A conventionally aluminium milled tool serves as reference. Standard specimens are produced to compare resulting mechanical properties, shrinkage behaviour and morphology. Findings The determined material characteristics of the manufactured prototypes from the additive manufactured tools show differences in terms of mechanical behaviour to those from the aluminium reference tool. The most significant differences are an up to 25 per cent lower tensile elongation and an up to 63 per cent lower elongation at break resulting in an embrittlement of the specimens produced. These differences seem to be mainly due to the different morphological structure caused by the lower thermal conductivity and greater surface roughness of the polymer tools. Research limitations/implications The determined differences in mechanical behaviour can partly be assigned to differences in surface roughness and morphological structure of the resulting parts. The exact extend of either cause, however, cannot be clearly determined. Originality/value This study provides a comparison between the part material properties from conventionally milled aluminium tools and polymer inserts manufactured via additive tooling.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Tiago Czelusniak ◽  
Fred Lacerda Amorim

Purpose This paper aims to provide a detailed study on influence of the laser energy density on mechanical, surface and dimensional properties of polyamide 12 (PA12) parts produced by selective laser sintering (SLS), providing the microstructural and crystallization evolution of the samples produced at different energy densities. Design/methodology/approach Making use of a space filling design of experiments, a wide range of laser sintering parameters is covered. Surface morphology is assessed by means of profile measurements and scanning electron microscopy (SEM) images. Mechanical testing, SEM, X-ray diffraction (XRD), differential scanning calorimeter (DSC) and infrared spectroscopy (FTIR) were used to assess the influence of energy density on structural and mechanical properties. Findings Results show a high dependency of the properties on the laser energy density and also a compromise existing between laser exposure parameters and desired properties of laser sintered parts. Surface roughness could be associated to overlap degree when using higher scan line spacing values and lower laser speeds improved surface roughness when high scan line spacing is used. Higher mechanical properties were found at higher energy density levels, but excessively high energy density decreased mechanical properties. A transition from brittle to ductile fracture with increasing energy density could be clearly observed by mechanical analysis and SEM. XRD and DSC measurements show a decrease on the crystal fraction with increasing energy densities, which corroborated the plastic behavior observed, and FTIR measurements revealed polymer degradation through chain scission might occur at too high energy densities. Originality/value Valuable guidelines are given regarding energy density optimization for SLS of PA12 considering not only quality criteria but also microstructure characteristics. Surface properties are studied based on the concept of degree of overlap between laser scanning lines. For the first time, crystallization behavior of SLS PA12 parts produced at different energy levels was studied by means of XRD measurements. Polymer degradation of SLS PA12 parts was evaluated with FTIR, which is a non-destructive and easy test to be conducted.


2018 ◽  
Vol 24 (2) ◽  
pp. 501-508 ◽  
Author(s):  
Clayton Neff ◽  
Matthew Trapuzzano ◽  
Nathan B. Crane

Purpose Additive manufacturing (AM) is readily capable of producing models and prototypes of complex geometry and is advancing in creating functional parts. However, AM processes typically underperform traditional manufacturing methods in mechanical properties, surface roughness and hermeticity. Solvent vapor treatments (vapor polishing) are commonly used to improve surface quality in thermoplastic parts, but the results are poorly characterized. Design/methodology/approach This work quantifies the surface roughness change and also evaluates the effect on hermeticity and mechanical property impacts for “as-printed” and acetone vapor-polished ABS tensile specimens of 1-, 2- and 4-mm thicknesses produced by material extrusion (FDM). Findings Vapor polishing proves to decrease the power spectral density for surface roughness features larger than 20 µm by a factor of 10× and shows significant improvement in hermeticity based on both perfluorocarbon gross leak and pressure leak tests. However, there is minimal impact on mechanical properties with the thin specimens showing a slight increase in elongation at break but decreased elastic modulus. A bi-exponential diffusion decay model for solvent evaporation suggest a thickness-independent and thickness-dependent time constant with the latter supporting a plasticizing effect on mechanical properties. Originality/value The contributions of this work show vapor polishing can have a substantial impact on the performance for end-use application of ABS FDM components.


2020 ◽  
Vol 26 (10) ◽  
pp. 1687-1700
Author(s):  
Mozhgan Sayanjali ◽  
Amir Masood Rezadoust ◽  
Foroud Abbassi Sourki

Purpose This paper aims to focus on the development of the three-dimensional (3D) printing filaments based on acrylonitrile butadiene styrene (ABS) copolymer and styrene-ethylene/butylene-styrene (SEBS) block copolymer, with tailored viscoelastic properties and controlled flow during the 3D printing process. Design/methodology/approach In this investigation, ABS was blended with various amounts of SEBS via a melt mixing process. Then the ABS/SEBS filaments were prepared by a single-screw extruder and printed by the FDM method. The rheological properties were determined using an MCR 501 from Anton-Paar. The melt flow behavior of ABS/SEBS filaments was determined. The morphology of the filaments was studied by scanning electron microscope and the mechanical (tensile and impact) properties, surface roughness and void content of printed samples were investigated. Findings The rheological results can accurately interpret what drives the morphology and mechanical properties’ changes in the blends. The impact strength, toughness, elongation-at-break and anisotropy in mechanical properties of ABS samples were improved concurrently by adding 40 Wt.% of SEBS. The optimal tensile properties of blend containing 40 Wt.% SEBS samples were obtained at −45°/+45° raster angle, 0.05 mm layer thickness and XYZ build orientation. Optimized samples showed an 890% increase in elongation compared to neat ABS. Also, the impact strength of ABS samples showed a 60% improvement by adding 40 Wt.% SEBS. Originality/value The paper simultaneously evaluates the effects of material composition and 3D printing parameters (layer thickness, raster angle and build orientation) on the rheology, morphology, mechanical properties and surface roughness. Also, a mechanical properties comparison between printed samples and their compression-molded counterpart was conducted.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Xiaojing Feng ◽  
Bin Cui ◽  
Yaxiong Liu ◽  
Lianggang Li ◽  
Xiaojun Shi ◽  
...  

Purpose The purpose of this paper is to solve the problems of poor mechanical properties, high surface roughness and waste support materials of thin-walled parts fabricated by flat-layered additive manufacturing process. Design/methodology/approach This paper proposes a curved-layered material extrusion modeling process with a five-axis motion mechanism. This process has advantages of the platform rotating, non-support printing and three-dimensional printing path. First, the authors present a curved-layered algorithm by offsetting the bottom surface into a series of conformal surfaces and a toolpath generation algorithm based on the geodesic distance field in each conformal surface. Second, they introduce a parallel five-axis printing machine consisting of a printing head fixed on a delta-type manipulator and a rotary platform on a spherical parallel machine. Findings Mechanical experiments show the failure force of the five-axis printed samples is 153% higher than that of the three-axis printed samples. Forming experiments show that the surface roughness significantly decreases from 42.09 to 18.31 µm, and in addition, the material consumption reduces by 42.90%. These data indicate the curved-layered algorithm and five-axis motion mechanism in this paper could effectively improve mechanical properties and the surface roughness of thin-walled parts, and realize non-support printing. These methods also have reference value for other additive manufacturing processes. Originality/value Previous researchers mostly focus on printing simple shapes such as arch or “T”-like shape. In contrast, this study sets out to explore the algorithm and benefits of modeling thin-walled parts by a five-axis machine. Several validated models would allow comparability in five-axis printing.


2014 ◽  
Vol 20 (3) ◽  
pp. 228-235 ◽  
Author(s):  
Ismail Durgun ◽  
Rukiye Ertan

Purpose – The mechanical properties and surface finish of functional parts are important consideration in rapid prototyping, and the selection of proper parameters is essential to improve manufacturing solutions. The purpose of this paper is to describe how parts manufactured by fused deposition modelling (FDM), with different part orientations and raster angles, were examined experimentally and evaluated to achieve the desired properties of the parts while shortening the manufacturing times due to maintenance costs. Design/methodology/approach – For this purpose, five different raster angles (0°, 30°, 45°, 60° and 90°) for three part orientations (horizontal, vertical and perpendicular) have been manufactured by the FDM method and tested for surface roughness, tensile strength and flexural strength. Also, behaviour of the mechanical properties was clarified with scanning electron microscopy images of fracture surfaces. Findings – The research results suggest that the orientation has a more significant influence than the raster angle on the surface roughness and mechanical behaviour of the resulting fused deposition part. The results indicate that there is close relationship between the surface roughness and the mechanical properties. Originality/value – The results of this paper are useful in defining the most appropriate raster angle and part orientation in minimum production cost for FDM components on the basis of their expected in-service loading.


2014 ◽  
Vol 20 (3) ◽  
pp. 236-244 ◽  
Author(s):  
David Espalin ◽  
Jorge Alberto Ramirez ◽  
Francisco Medina ◽  
Ryan Wicker

Purpose – The purpose of this paper is to investigate a build process variation for fused deposition modeling (FDM) in which contours and rasters (also referred to as internal fill patterns) are built using different layer thicknesses and road widths. In particular, the paper examines the effect of the build process variation on surface roughness, production times and mechanical properties. Additionally, a unique FDM process was developed that enabled the deposition of discrete multiple materials at different layers and regions within layers. Design/methodology/approach – A multi-material, multi-technology FDM system was developed and constructed to enable the production of parts using either discrete multi-materials or the build process variation (variable layer thickness and road width). Two legacy FDM machines were modified and installed onto a single manufacturing system to allow the strategic, spatially controlled thermoplastic deposition with multiple extrusion nozzles of multiple materials during the same build. This automated process was enabled by the use of a build platform attached to a pneumatic slide that moved the platform between the two FDM systems, an overall control system, a central PC and a custom-made program (FDMotion) and graphic user interface. The term multi-technology FDM system used here implies the two FDM systems and the integration of these systems into a single manufacturing environment using the movable platform and associated hardware and software. Future work will integrate additional technologies within this system. Parts produced using the build process variation utilized internal roads with 1,524 μm road width and 508 μm layer height, while the contours used 254 μm road width and 127 μm layer height. Measurements were performed and compared to standard FDM parts that included surface roughness of planes at different inclinations, tensile testing and fabrication times. Findings – Results showed that when compared to the standard FDM process, the parts produced using the build process variation exhibited the same tensile properties as determined by a student's t-test (p-values > 0.05, μ1-μ2 = 0, n = 5). Surface roughness measurements revealed that the process variation resulted in surface roughness (Ra) improvements of 55, 43, 44 and 38 per cent for respective planes inclined at 10, 15, 30 and 45° from vertical. In addition, for a 50.8 × 50.8 mm square section (25.4 mm tall), the build process variation required a minimum of 2.8 hours to build, while the standard FDM process required 6.0 hours constituting a 53 per cent reduction in build time. Finally, several manufacturing demonstrations were performed including the fabrication of a discrete PC-ABS sandwich structure containing tetragonal truss core elements. Originality/value – This paper demonstrates a build strategy that varies contour and raster widths and layer thicknesses for FDM that can be used to improve surface roughness – a characteristic that has historically been in need of improvement – and reduce fabrication time while retaining mechanical properties.


2021 ◽  
Author(s):  
Wencke Krings ◽  
Jordi Marcé-Nogué ◽  
Stanislav N. Gorb

Abstract The radula, a chitinous membrane with embedded tooth rows, is the molluscan autapomorphy for feeding. The morphologies, arrangements and mechanical properties of teeth can vary between taxa, which is usually interpreted as adaptation to food. In previous studies, we proposed about trophic and other functional specialisations in taenioglossan radulae from species of African paludomid gastropods. These were based on the analysis of shape, material properties, force-resistance, and the mechanical behaviour of teeth, when interacting with an obstacle, which was previously simulated for one species (Spekia) by the finite-element-analysis (FEA) and, for more species, observed in experiments. In the here presented work, we test the previous hypotheses by applying the FEA on 3D modelled radulae, with incorporated material properties, from three additional paludomid species. These species forage either on algae attached to rocks (Lavigeria), covering sand (Cleopatra), or attached to plant surface and covering sand (Bridouxia). Since the analysed radulae vary greatly in their size between species, we additionally aimed at relating the simulated stress and strain distributions with the tooth sizes by altering the force/volume. For this purpose, we also included Spekia again in the present study. Our FEA results show that smaller radulae are more affected by stress and strain than larger ones, when each tooth is loaded with the same force. However, the results are not fully in congruence with results from the previous breaking stress experiments, indicating that besides the parameter size, more mechanisms leading to reduced stress/strain must be present in radulae.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Peng Yang ◽  
Dingyong He ◽  
Zengjie Wang ◽  
Zhen Tan ◽  
Hanguang Fu ◽  
...  

Purpose In this research, the highly dense bulk Cu-5Sn alloy specimens were fabricated using selective laser melting (SLM). This study aims to establish the relationship between laser power (LP), scanning speed (SS) and hatch space (HS) with surface roughness (Ra) and density. To obtain Cu-5Sn alloy formed parts with high strength and low surface roughness. The microstructure and mechanical properties of SLMed Cu-5Sn were investigated. Design/methodology/approach The relative density (RD) was optimized using the response surface method (RSM) and analysis of variance. First, the Ra of SLMed formed specimens was studied to optimize the forming process parameters with a good surface. Then, the dense specimens were studied by ANOVA and the RSM to obtain dense specimens for mechanical property analysis. Findings Dense specimens were obtained by RSM and ANOVA. The tensile properties were compared with the casted specimens. The yield and ultimate strengths increased from 71 and 131 MPa for the cast specimens to 334 and 489 MPa for the SLMed specimens, respectively. The ductility increased significantly from 11% to 23%, due to the refined microstructure of the SLMed specimens, as well as the formation of many twin crystals. Originality/value The Ra, RD and mechanical properties of SLM specimens Cu-5Sn were systematically studied, and the influencing factors were analyzed together. This study provides a theoretical and practical example to improve the surface quality and RD.


2020 ◽  
Vol 26 (10) ◽  
pp. 1809-1825
Author(s):  
Aldi Mehmeti ◽  
Pavel Penchev ◽  
Donal Lynch ◽  
Denis Vincent ◽  
Nathalie Maillol ◽  
...  

Purpose The paper reports an investigation into the mechanical behaviour of hybrid components produced by combining the capabilities of metal injection moulding (MIM) with the laser-based powder bed fusion (PBF) process to produce small series of hybrid components. The research investigates systematically the mechanical properties and the performance of the MIM/PBF interfaces in such hybrid components. Design/methodology/approach The MIM process is employed to fabricate relatively lower cost preforms in higher quantities, whereas the PBF technology is deployed to build on them sections that can be personalised, customised or functionalised to meet specific technical requirements. Findings The results are discussed, and conclusions are made about the mechanical performance of such hybrid components produced in batches and also about the production efficiency of the investigated hybrid manufacturing (HM) route. The obtained results show that the proposed HM route can produce hybrid MIM/PBF components with consistent mechanical properties and interface performance which comply with the American Society for Testing and Materials (ASTM) standards. Originality/value The manufacturing of hybrid components, especially by combining the capabilities of additive manufacturing processes with cost-effective complementary technologies, is designed to be exploited by industry because they can offer flexibility and cost advantages in producing small series of customisable products. The findings of this research will contribute to further develop the state of the art in regards to the manufacturing and optimisation of hybrid components.


2014 ◽  
Vol 20 (6) ◽  
pp. 444-448 ◽  
Author(s):  
A. B. Spierings ◽  
M. Schoepf ◽  
R. Kiesel ◽  
K. Wegener

Purpose – The purpose of this study is the development of a global SLM-manufacturing optimization strategy taking into account material porosity and SLM process productivity. Selective laser melting (SLM) is a master forming process generating not only a near net shape geometry, but also the material with its properties. Research focuses primarily on optimal processing parameters for maximised material properties. However, the process allows also designing the material structure by internal porosity, affecting global material properties and the process productivity. Design/methodology/approach – The study investigates the influence of the main SLM process parameters on material porosity and consequently on the static mechanical properties of hardened SS17-4PH material. Furthermore, a model for the SLM scanning productivity is developed based on the SLM processing parameters. Findings – The results show a clear correlation between porosity level and mechanical properties. Thereby, the mechanical strength and material modulus can be varied in a wide range. The degree of internal material porosity can be correlated to the energy input defined by a set of SLM processing parameters, such as Laser power, powder layer thickness and scan speed, allowing pre-definition of a specific degree of porosity. Originality/value – Aligning of the SLM processing parameters to the technical material requirements of the parts to be produced, e.g. maximal stresses in service, required E-modulus or lightweight aspects, enlarges the general design space significantly. In combination with the presented model for the scanning productivity, it is further possible to optimize the SLM build rate.


Sign in / Sign up

Export Citation Format

Share Document