Application and discussion of key technologies for the integration of high-temperature Electrostatic Precipitator + SCR denitrification in the cement industry

Author(s):  
Xiaodong Shi ◽  
Xudong Ji ◽  
Jianjun Zhu ◽  
Licheng Zheng ◽  
Shuai zhang
Atmosphere ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 128
Author(s):  
Zhonggen Li ◽  
Yiming Huang ◽  
Xinyu Li ◽  
Guan Wang ◽  
Qingfeng Wang ◽  
...  

Atmospheric emission of heavy metals from different anthropogenic sources is a great concern to human beings due to their toxicities. In order to disclose the emission levels and the distribution patterns of zinc (Zn) in the modern cement industry with respect to its low boiling point (~900 °C) comparing to the high-temperature (1450 °C) clinker production process, solid samples representing the input and output flow of Zn during the entire production process in two preheater–precalciner cement plants (CPs) were collected and analyzed. For the first time, it was found that the behaviour of Zn inside different precalciner CPs was similar despite a huge difference in the Zn inputs to the CPs; namely, almost all the Zn input was output in clinker, which was then mixed with different additives and retarder to make cement products. The high-temperature clinkerisation process would incorporate Zn into the aluminosilicate of clinker. As a result, there was no enrichment of Zn during clinker production and the atmospheric emission factor was relatively low at 0.002%, or 1.28–9.39 mg Zn·t−1 clinker. Our result for the atmospheric Zn emissions from CPs was much lower than most previous reports, implying the CPs were not a crucial Zn emission source. However, the higher load of Zn in some raw/alternative materials—like nonferrous smelting slag with a Zn content of ~2%—could greatly increase the content of Zn in clinker and cement products. Therefore, further investigation on the environmental stability of Zn in such Zn-laden cement and concrete should be carried out.


Author(s):  
R. Radhakrishnan ◽  
P. K. Gounder ◽  
S. Kavidass ◽  
V. Zakkay ◽  
R. Dellefield

NYU has an ongoing research program which is being funded by DOE to test three types of high-pressure, high-temperature filters. The main objectives of the testing program are: (1) to establish the performance capability of the filters under high-pressure and high-temperature conditions; and (2) to evaluate the dust collection efficiency. Shakedown tests for a duration of about 50 hours was completed during October 1986. Testing of the electrostatic precipitator (ESP) is in progress. The first test with ESP was performed during the middle of November 1986. The operating experience with respect to the test facility, and in particular with the particulate sampling systems, is reported in this paper. Additionally, some test results are also discussed.


2013 ◽  
Vol 405-408 ◽  
pp. 2564-2575
Author(s):  
Yan Jun Liu ◽  
Yong Chao Zheng

This paper presents a laboratory study on active belite cement clinker using boron oxide as dopant to stabilize high temperature phases of Dicalcium silicate (C2S), and mineral waste as siliceous materials in complete replacement of clay. The clinker samples were soaked in Muffle Furnace at different burning temperatures and for various time durations, and then, cooled down to room temperature using air blower. Quantitative X-ray Diffraction analysis (QXRD) by Rietveld method indicates that major mineral components are Dicalcium Silicate (C2S), Ferrite (C2 (A0.48F1.52) O5) and trace amount of Tricalcium Silicate (C3S) in the cement clinkers. Among them, Dicalcium silicate is over 85 percent, Ferrite around 10 percent and Tricalcium silicate less than 10 percent. Thermogravimetric and Differential Scanning Calorimetric (TGA-DSC) spectrum shows that there is no significant phase change while cement clinker was cooling down, which means significant amount of high temperature polymorphic C2S was stabilized during cooling process. It is agreeable with the results from QXRD analysis. Specifically, among polymorphic belite phases, αH-C2S accounts for around 66% of cement clinker, and αL-C2S for about 22% of cement clinker. In addition, massive belite phase was identified by Scanning Electronic Microscope (SEM) analysis and Light Microscopy analysis. At last, the mechanical tests on active belite cement show that active belite cement clinker has a slow strength development at early ages, but rapid strength gain at 28 days in comparison with belite clinker without adding boron oxide. Thus, this active belite cement clinker demonstrates very promising prospect in sustainable cement industry development. Keywords: Active Belite Cement Clinker; Doped; Boron Oxide; αH-C2S; αL-C2S; Strength Development


2012 ◽  
Vol 610-613 ◽  
pp. 2378-2385 ◽  
Author(s):  
Yan Jun Liu ◽  
Yong Chao Zheng

This paper presents a laboratory study on active belite cement linker using mineral waste as one of the major raw meal components. The main chemical component of mineral waste employed in this study is silica (SiO2), around 70%. The raw meals were soaked in Muffle Furnace at 1350oC for 10 minutes and 20minutes respectively, then, cooled down to room temperature using air blower. Boron Oxide was used to stabilize high temperature phases of C2S. QXRD analysis indicates that active belite cement clinker has major mineral components consisting of Dicalcium Silicate (C2S), Ferrite (C2 (A0.48F1.52) O5) and trace amount of Tricalcium Silicate (C3S). Among them, Dicalcium silicate is over 85 percent, Ferrite around 10 percent and Tricalcium silicate less than 10 percent. Also, significant amount of high temperature polymorphic C2S was stabilized under room temperature. Among polymorphic belite phases, αH-C2S accounts for around 66% of cement clinker, and αL-C2S for about 22% of cement clinker. Scanning Eαlectronic Microscope (SEM) analysis also shows coαnsiderable round grains of C2S. TGA-DSC spectrum indicated there is no significant phase change while cement clinker was cooling down. Also, the mechanical tests on active belite cement show that active belite cement clinker has a slow strength development at early ages, but rapid strength gain over 70Mpa at 28 days. Thus, this active belite cement clinker demonstrates very promising prospect in sustainable cement industry development.


2021 ◽  
Author(s):  
Rizwan Haider ◽  
Yichan Wen ◽  
Zi-Feng Ma ◽  
David P. Wilkinson ◽  
Lei Zhang ◽  
...  

This comprehensive review gives a picture about the state-of-the-art progress of HT-PEMFCs, and the challenges, strategies and rules to design, evaluate and promote the performance of HT-PEMFCs.


2014 ◽  
Vol 472 ◽  
pp. 242-246
Author(s):  
Bo Jiang ◽  
Xing Lin Qi ◽  
Zhi Ning Zhao

MEMS technology has been widely used in military industry, in order to further expand the scope of the MEMS pressure sensor applications in military industry, to make fuze development toward miniaturization and intelligent, do the study on special fuze MEMS pressure sensor. Environment of MEMS pressure sensor application in fuze is analyzed, consist service treatment environment and using environment, which can provide indicators for the development of the sensor. The paper analyzes several key technology of the fuze MEMS pressure sensor, including the technique of high temperature resistant, acceleration compensation, leadless, high frequency resistant and overload resistant and so on. To sum up, the continuous development of MEMS technology can make its products meet the use environment of fuze, and the development trend of the fuze also needs the support of MEMS technology, so it is necessary and feasible to carry out the research of the fuze MEMS pressure sensor.


Author(s):  
Eisaku Ito ◽  
Ikuo Okada ◽  
Keizo Tsukagoshi ◽  
Junichiro Masada

Global warming is being “prevented” by reducing power plant CO2 emissions. We are contributing to the overall solution by improving the gas turbine thermal efficiency for gas turbine combined cycle (GTCC). Mitsubishi Heavy Industries, Ltd. (MHI) is a participant in a national project aimed at developing 1700°C gas turbine technology. As part of this national project, selected component technologies are investigated in detail. Some technologies which have been verified through component tests have been applied to the design of the newly developed 1600°C J-type gas turbine.


Author(s):  
V. Zakkay ◽  
E. A. M. Gbordzoe ◽  
K. M. Sellakumar ◽  
C. Q. Lu

Three hot gas clean up units namely, the Screenless Granular Bed Filter (GBF), Ceramic Cross-flow Filter (CXF) and High Temperature, High Pressure Electrostatic Precipitator (ESP) designed for PFBC combined cycle power applications were tested at the New York University (NYU) DOE-PFBC facility located at Westbury, New York using a 780 mm ID pressurized fluidized bed combustor. The combustor was operated up to 10 atma and 870 °C. With the exception of the ESP whose performance was hampered by persistent electrode bushing failure, the particulate capturing efficiencies of the GBF and the CXF were predominantly in the upper 90 % range. The dust loading leaving the filters was consistently lower than the NSPS particulate emission limit. The results also indicate that the filter exit gas stream may meet the gas turbine particulate tolerance limit. None of the three high temperature, high pressure (HTHP) gas clean up units tested emerges as a favorite for use in cleaning PFBC exhaust stream because, each has mechanical design as well as operational flaws which could be corrected. The Cross-flow filter suffered from filter element cracking or delamination or gasket failure during its short test program. The backpulse cleaning system also needs to be optimized. The GBF is susceptible to media bubbling and granule flow problems through its lower seal leg. The Electrostatic Precipitator tested at NYU failed because its electrode bushings cracked due to overheating and could not hold their designed voltage. Further HTHP filter testing at the sub-pilot plant scale is necessary to optimize filter design and develop effective operational procedures for the hot gas clean up systems that will make them viable for commercial PFBC application.


Author(s):  
K. Kano ◽  
H. Matsuzaki ◽  
K. Aoyama ◽  
S. Aoki ◽  
S. Mandai

This paper outlines the development programs of the next generation, 1500°C Class, high efficiency gas turbine. Combined cycle thermal efficiency of more than 55% (LHV) is expected to be obtained with metallic turbine components. To accomplish this, advancements must be made in the key technologies of NOx control, materials and cooling.


2019 ◽  
Vol 96 ◽  
pp. 02004
Author(s):  
Tebogo Mashifana

A million tons of Phosphogypsum (PG) is stacked in the environment every year and is progressively considered an asset. South African construction industry is expanding as a result of infrastructural developments in the country, the reuse of PG in this industry is considered for recycling and reducing the stacks in landfills. Phosphogypsum is known for its limited ability to use in cement industry due to its phosphorus and radionuclides impurities. This study was conducted to reduce these impurities and investigate the probability of PG application in building and construction. Leaching of PG with citric acid was conducted whereby a relative proportion of P2O5 and radionuclides was reduced in the material, constituents which contributes to strengths reduction. Optimum moisture Contents and maximum dry densities were determined for various PG content mix designs in which Lime and Fly Ash were added to stabilise PG material. The composites were compacted at various moisture contents and cured at low and elevated temperatures of at 40 °C and 80 °C for 4 days. The results obtained shows that for unconfined compressive strengths; the composites produced from PG, and cured at high temperature qualified for the use in construction industry.


Sign in / Sign up

Export Citation Format

Share Document